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Flop count

▶ flop (floating-point operation): one addition, subtraction, multiplication, or division of two
floating-point numbers

▶ to estimate complexity of an algorithm
– express number of flops as a (polynomial) function of the problem dimensions
– simplify by keeping only the leading terms

▶ not an accurate predictor of computation time on modern computers, but useful as a rough
estimate of complexity
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Basic linear algebra subroutines (BLAS)

vector-vector operations (x, y ∈ Rn) (BLAS level 1)
▶ inner product xTy: 2n − 1 flops (≈ 2n, O(n))
▶ sum x + y, scalar multiplication 𝛼x: n flops

matrix-vector product y = Ax with A ∈ Rm×n (BLAS level 2)
▶ m(2n − 1) flops (≈ 2mn)
▶ 2N if A is sparse with N nonzero elements
▶ 2p(n + m) if A is given as A = UVT , U ∈ Rm×p, V ∈ Rn×p

matrix-matrix product C = AB with A ∈ Rm×n, B ∈ Rn×p (BLAS level 3)
▶ mp(2n − 1) flops (≈ 2mnp)
▶ less if A and/or B are sparse
▶ (1/2)m(m + 1) (2n − 1) ≈ m2n if m = p and C symmetric
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BLAS on modern computers

▶ there are good implementations of BLAS and variants (e.g., for sparse matrices)
▶ CPU single thread speeds typically 1–10 Gflops/s (109 flops/sec)
▶ CPU multi threaded speeds typically 10–100 Gflops/s
▶ GPU speeds typically 100 Gflops/s–1 Tflops/s (1012 flops/sec)
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Complexity of solving linear equations

▶ A ∈ Rn×n is invertible, b ∈ Rn

▶ solution of Ax = b is x = A−1b

▶ solving Ax = b, i.e., computing x = A−1b
– almost never done by computing A−1, then multiplying by b
– for general methods, O(n3)
– (much) less if A is structured (banded, sparse, Toeplitz, . . . )
– e.g., for A with half-bandwidth k (Aij = 0 for |i − j | > k, O(k2n)

▶ it’s super useful to recognize matrix structure that can be exploited in solving Ax = b
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Linear equations that are easy to solve

▶ diagonal matrices: n flops; x = A−1b = (b1/a11, . . . , bn/ann)

▶ lower triangular: n2 flops via forward substitution

x1 := b1/a11

x2 := (b2 − a21x1)/a22

x3 := (b3 − a31x1 − a32x2)/a33
...

xn := (bn − an1x1 − an2x2 − · · · − an,n−1xn−1)/ann

▶ upper triangular: n2 flops via backward substitution
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Linear equations that are easy to solve

▶ orthogonal matrices (A−1 = AT ):
– 2n2 flops to compute x = ATb for general A
– less with structure, e.g., if A = I − 2uuT with ∥u∥2 = 1, we can compute x = ATb = b − 2(uTb)u in

4n flops

▶ permutation matrices: for 𝜋 = (𝜋1, 𝜋2, . . . , 𝜋n) a permutation of (1, 2, . . . , n)

aij =

{
1 j = 𝜋i
0 otherwise

– interpretation: Ax = (x𝜋1 , . . . , x𝜋n )
– satisfies A−1 = AT , hence cost of solving Ax = b is 0 flops
– example:

A =


0 1 0
0 0 1
1 0 0

 , A−1 = AT =


0 0 1
1 0 0
0 1 0
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Factor-solve method for solving Ax = b

▶ factor A as a product of simple matrices (usually 2–5):

A = A1A2 · · ·Ak

▶ e.g., Ai diagonal, upper or lower triangular, orthogonal, permutation, . . .

▶ compute x = A−1b = A−1
k · · ·A−1

2 A−1
1 b by solving k ‘easy’ systems of equations

A1x1 = b, A2x2 = x1, . . . Akx = xk−1

▶ cost of factorization step usually dominates cost of solve step
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Solving equations with multiple righthand sides

▶ we wish to solve
Ax1 = b1, Ax2 = b2, . . . Axm = bm

▶ cost: one factorization plus m solves

▶ called factorization caching

▶ when factorization cost dominates solve cost, we can solve a modest number of equations
at the same cost as one (!!)
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LU factorization

▶ every nonsingular matrix A can be factored as A = PLU with P a permutation, L lower
triangular, U upper triangular

▶ factorization cost: (2/3)n3 flops

Solving linear equations by LU factorization.
given a set of linear equations Ax = b, with A nonsingular.

1. LU factorization. Factor A as A = PLU ((2/3)n3 flops).
2. Permutation. Solve Pz1 = b (0 flops).
3. Forward substitution. Solve Lz2 = z1 (n2 flops).
4. Backward substitution. Solve Ux = z2 (n2 flops).

▶ total cost: (2/3)n3 + 2n2 ≈ (2/3)n3 for large n
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Sparse LU factorization

▶ for A sparse and invertible, factor as A = P1LUP2

▶ adding permutation matrix P2 offers possibility of sparser L, U

▶ hence, less storage and cheaper factor and solve steps

▶ P1 and P2 chosen (heuristically) to yield sparse L, U

▶ choice of P1 and P2 depends on sparsity pattern and values of A

▶ cost is usually much less than (2/3)n3; exact value depends in a complicated way on n,
number of zeros in A, sparsity pattern

▶ often practical to solve very large sparse systems of equations
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Cholesky factorization

▶ every positive definite A can be factored as A = LLT

▶ L is lower triangular with positive diagonal entries

▶ Cholesjy factorization cost: (1/3)n3 flops

Solving linear equations by Cholesky factorization.
given a set of linear equations Ax = b, with A ∈ Sn

++.
1. Cholesky factorization. Factor A as A = LLT ((1/3)n3 flops).
2. Forward substitution. Solve Lz1 = b (n2 flops).
3. Backward substitution. Solve LTx = z1 (n2 flops).

▶ total cost: (1/3)n3 + 2n2 ≈ (1/3)n3 for large n
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Sparse Cholesky factorization

▶ for sparse positive define A, factor as A = PLLTPT

▶ adding permutation matrix P offers possibility of sparser L

▶ same as
– permuting rows and columns of A to get Ã = PTAP
– then finding Cholesky factorization of Ã

▶ P chosen (heuristically) to yield sparse L

▶ choice of P only depends on sparsity pattern of A (unlike sparse LU)

▶ cost is usually much less than (1/3)n3; exact value depends in a complicated way on n,
number of zeros in A, sparsity pattern
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Example

▶ sparse A with upper arrow sparsity pattern

A =


∗ ∗ ∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

 L =


∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗


L is full, with O(n2) nonzeros; solve cost is O(n2)

▶ reverse order of entries (i.e., permute) to get lower arrow sparsity pattern

Ã =


∗ ∗

∗ ∗
∗ ∗

∗ ∗
∗ ∗ ∗ ∗ ∗

 L =


∗

∗
∗

∗
∗ ∗ ∗ ∗ ∗


L is sparse with O(n) nonzeros; cost of solve is O(n)
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LDLT factorization

▶ every nonsingular symmetric matrix A can be factored as

A = PLDLTPT

with P a permutation matrix, L lower triangular, D block diagonal with 1 × 1 or 2 × 2 diagonal
blocks

▶ factorization cost: (1/3)n3

▶ cost of solving linear equations with symmetric A by LDLT factorization:
(1/3)n3 + 2n2 ≈ (1/3)n3 for large n

▶ for sparse A, can choose P to yield sparse L; cost ≪ (1/3)n3
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Equations with structured sub-blocks

▶ express Ax = b in blocks as [
A11 A12
A21 A22

] [
x1
x2

]
=

[
b1
b2

]
with x1 ∈ Rn1 , x2 ∈ Rn2 ; blocks Aij ∈ Rni×nj

▶ assuming A11 is nonsingular, can eliminate x1 as

x1 = A−1
11 (b1 − A12x2)

▶ to compute x2, solve
(A22 − A21A−1

11 A12)x2 = b2 − A21A−1
11 b1

▶ S = A22 − A21A−1
11 A12 is the Shur complement
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Bock elimination method

Solving linear equations by block elimination.
given a nonsingular set of linear equations with A11 nonsingular.

1. Form A−1
11 A12 and A−1

11 b1.
2. Form S = A22 − A21A−1

11 A12 and b̃ = b2 − A21A−1
11 b1.

3. Determine x2 by solving Sx2 = b̃.
4. Determine x1 by solving A11x1 = b1 − A12x2.

dominant terms in flop count
▶ step 1: f + n2s (f is cost of factoring A11; s is cost of solve step)
▶ step 2: 2n2

2n1 (cost dominated by product of A21 and A−1
11 A12)

▶ step 3: (2/3)n3
2

total: f + n2s + 2n2
2n1 + (2/3)n3

2
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Examples

▶ for general A11, f = (2/3)n3
1, s = 2n2

1

#flops = (2/3)n3
1 + 2n2

1n2 + 2n2
2n1 + (2/3)n3

2 = (2/3) (n1 + n2)3

so, no gain over standard method

▶ block elimination is useful for structured A11 (f ≪ n3
1)

▶ for example, A11 diagonal (f = 0, s = n1): #flops ≈ 2n2
2n1 + (2/3)n3

2
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Structured plus low rank matrices

▶ we wish to solve (A + BC)x = b, A ∈ Rn×n, B ∈ Rn×p, C ∈ Rp×n

▶ assume A has structure (i.e., Ax = b easy to solve)
▶ first uneliminate to write as block equations with new variable y[

A B
C −I

] [
x
y

]
=

[
b
0

]
▶ now apply block elimination: solve

(I + CA−1B)y = CA−1b,

then solve Ax = b − By
▶ this proves the matrix inversion lemma: if A and A + BC are nonsingular,

(A + BC)−1 = A−1 − A−1B(I + CA−1B)−1CA−1

Convex Optimization Boyd and Vandenberghe B.21



Example: Solving diagonal plus low rank equations

▶ with A diagonal, p ≪ n, A + BC is called diagonal plus low rank

▶ for covariance matrices, called a factor model

▶ method 1: form D = A + BC, then solve Dx = b
– storage n2

– solve cost (2/3)n3 + 2pn2 (cubic in n)

▶ method 2: solve (I + CA−1B)y = CA−1b, then compute x = A−1b − A−1By
– storage O(np)
– solve cost 2p2n + (2/3)p3 (linear in n)
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