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Minimum volume ellipsoid around a set

▶ Löwner-John ellipsoid of a set C: minimum volume ellipsoid E with C ⊆ E

▶ parametrize E as E = {v | ∥Av + b∥2 ≤ 1}; can assume A ∈ Sn
++

▶ vol E is proportional to det A−1; to find Löwner-John ellipsoid, solve problem

minimize (over A, b) log det A−1

subject to supv∈C ∥Av + b∥2 ≤ 1

convex, but evaluating the constraint can be hard (for general C)

▶ finite set C = {x1, . . . , xm}:

minimize (over A, b) log det A−1

subject to ∥Axi + b∥2 ≤ 1, i = 1, . . . ,m

also gives Löwner-John ellipsoid for polyhedron conv{x1, . . . , xm}
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Maximum volume inscribed ellipsoid
▶ maximum volume ellipsoid E with E ⊆ C, C ⊆ Rn convex
▶ parametrize E as E = {Bu + d | ∥u∥2 ≤ 1}; can assume B ∈ Sn

++

▶ vol E is proportional to det B; can find E by solving

maximize log det B
subject to sup∥u∥2≤1 IC (Bu + d) ≤ 0

(where IC (x) = 0 for x ∈ C and IC (x) = ∞ for x ∉ C)
convex, but evaluating the constraint can be hard (for general C)

▶ polyhedron {x | aT
i x ≤ bi, i = 1, . . . ,m}:

maximize log det B
subject to ∥Bai∥2 + aT

i d ≤ bi, i = 1, . . . ,m

(constraint follows from sup∥u∥2≤1 aT
i (Bu + d) = ∥Bai∥2 + aT

i d)
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Efficiency of ellipsoidal approximations

▶ C ⊆ Rn convex, bounded, with nonempty interior
▶ Löwner-John ellipsoid, shrunk by a factor n (around its center), lies inside C
▶ maximum volume inscribed ellipsoid, expanded by a factor n (around its center) covers C

▶ example (for polyhedra in R2)

▶ factor n can be improved to
√

n if C is symmetric
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Centering
▶ many possible definitions of ‘center’ of a convex set C

▶ Chebyshev center: center of largest inscribed ball
– for polyhedron, can be found via linear programming

▶ center of maximum volume inscribed ellipsoid
– invariant under affine coordinate transformations

xchebxcheb xmve
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Analytic center of a set of inequalities

▶ the analytic center of set of convex inequalities and linear equations

fi (x) ≤ 0, i = 1, . . . ,m, Fx = g

is defined as solution of
minimize −∑m

i=1 log(−fi (x))
subject to Fx = g

▶ objective is called the log-barrier for the inequalities

▶ (we’ll see later) analytic center more easily computed than MVE or Chebyshev center

▶ two sets of inequalities can describe the same set, but have different analytic centers
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Analytic center of linear inequalities
▶ aT

i x ≤ bi, i = 1, . . . ,m
▶ xac minimizes 𝜙(x) = −∑m

i=1 log(bi − aT
i x)

▶ dashed lines are level curves of 𝜙

xac
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Inner and outer ellipsoids from analytic center

▶ we have
Einner ⊆ {x | aT

i x ≤ bi, i = 1, . . . ,m} ⊆ Eouter

where

Einner = {x | (x − xac)T∇2𝜙(xac) (x − xac) ≤ 1}
Eouter = {x | (x − xac)T∇2𝜙(xac) (x − xac) ≤ m(m − 1)}

▶ ellipsoid expansion/shrinkage factor is
√︁

m(m − 1)
(cf. n for Löwner-John or max volume inscribed ellpsoids)
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Linear discrimination
▶ separate two sets of points {x1, . . . , xN}, {y1, . . . , yM} by a hyperplane
▶ i.e., find a ∈ Rn, b ∈ R with

aTxi + b > 0, i = 1, . . . ,N, aTyi + b < 0, i = 1, . . . ,M

▶ homogeneous in a, b, hence equivalent to

aTxi + b ≥ 1, i = 1, . . . ,N, aTyi + b ≤ −1, i = 1, . . . ,M

a set of linear inequalities in a, b, i.e., an LP feasibility problem
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Robust linear discrimination

(Euclidean) distance between hyperplanes

H1 = {z | aTz + b = 1}
H2 = {z | aTz + b = −1}

is dist(H1,H2) = 2/∥a∥2

to separate two sets of points by maximum margin,

minimize (1/2)∥a∥2
2

subject to aTxi + b ≥ 1, i = 1, . . . ,N
aTyi + b ≤ −1, i = 1, . . . ,M

(2)

a QP in a, b

Convex Optimization Boyd and Vandenberghe 8.12



Approximate linear separation of non-separable sets

minimize 1Tu + 1Tv
subject to aTxi + b ≥ 1 − ui, i = 1, . . . ,N, aTyi + b ≤ −1 + vi, i = 1, . . . ,M

u ⪰ 0, v ⪰ 0

▶ an LP in a, b, u, v
▶ at optimum, ui = max{0, 1 − aTxi − b}, vi = max{0, 1 + aTyi + b}
▶ equivalent to minimizing the sum of violations of the original inequalities
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Support vector classifier

minimize ∥a∥2 + 𝛾(1Tu + 1Tv)
subject to aTxi + b ≥ 1 − ui, i = 1, . . . ,N

aTyi + b ≤ −1 + vi, i = 1, . . . ,M
u ⪰ 0, v ⪰ 0

produces point on trade-off curve between inverse of margin 2/∥a∥2 and classification error,
measured by total slack 1Tu + 1Tv

example on previous slide, with 𝛾 = 0.1:
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Nonlinear discrimination

▶ separate two sets of points by a nonlinear function f : find f : Rn → R with

f (xi) > 0, i = 1, . . . ,N, f (yi) < 0, i = 1, . . . ,M

▶ choose a linearly parametrized family of functions f (z) = 𝜃TF(z)
– 𝜃 ∈ Rk is parameter
– F = (F1, . . . ,Fk) : Rn → Rk are basis functions

▶ solve a set of linear inequalities in 𝜃:

𝜃TF(xi) ≥ 1, i = 1, . . . ,N, 𝜃TF(yi) ≤ −1, i = 1, . . . ,M
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Examples

▶ quadratic discrimination: f (z) = zTPz + qTz + r, 𝜃 = (P, q, r)
▶ solve LP feasibility problem with variables P ∈ Sn, q ∈ Rn, r ∈ R

xT
i Pxi + qTxi + r ≥ 1, yT

i Pyi + qTyi + r ≤ −1

▶ can add additional constraints (e.g., P ⪯ −I to separate by an ellipsoid)

▶ polynomial discrimination: F(z) are all monomials up to a given degree d
▶ e.g., for n = 2, d = 3

F(z) = (1, z1, z2, z2
1, z1z2, z2

2, z3
1, z2

1z2, z1z2
2, z3

2)
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Example

separation by ellipsoid separation by 4th degree polynomial
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Placement and facility location

▶ N points with coordinates xi ∈ R2 (or R3)

▶ some positions xi are given; the other xi’s are variables

▶ for each pair of points, a cost function fij (xi, xj)

▶ placement problem: minimize
∑

i≠j fij (xi, xj)

▶ interpretations
– points are locations of plants or warehouses; fij is transportation cost between facilities i and j
– points are locations of cells in an integrated circuit; fij represents wirelength
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Example
▶ minimize

∑
(i,j) ∈E h(∥xi − xj∥2), with 6 free points, 27 edges

▶ optimal placements for h(z) = z, h(z) = z2, h(z) = z4
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▶ histograms of edge lengths ∥xi − xj∥2, (i, ) ∈ E
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