Convex Optimization

Stephen Boyd Lieven Vandenberghe

Revised slides by Stephen Boyd, Lieven Vandenberghe, and Parth Nobel

8. Geometric problems

Outline

Extremal volume ellipsoids

Centering

Classification

Placement and facility location

Convex Optimization

Minimum volume ellipsoid around a set

- **Löwner-John ellipsoid** of a set *C*: minimum volume ellipsoid \mathcal{E} with $C \subseteq \mathcal{E}$
- ▶ parametrize \mathcal{E} as $\mathcal{E} = \{v \mid ||Av + b||_2 \le 1\}$; can assume $A \in \mathbf{S}_{++}^n$
- ▶ vol \mathcal{E} is proportional to det A^{-1} ; to find Löwner-John ellipsoid, solve problem

 $\begin{array}{ll} \mbox{minimize (over } A, \, b) & \log \det A^{-1} \\ \mbox{subject to} & \mbox{sup}_{v \in C} \, \|Av + b\|_2 \leq 1 \\ \end{array}$

convex, but evaluating the constraint can be hard (for general C)

• finite set
$$C = \{x_1, ..., x_m\}$$
:

minimize (over A, b) log det A^{-1} subject to $||Ax_i + b||_2 \le 1$, i = 1, ..., m

also gives Löwner-John ellipsoid for polyhedron $conv{x_1, ..., x_m}$

Convex Optimization

Maximum volume inscribed ellipsoid

- maximum volume ellipsoid \mathcal{E} with $\mathcal{E} \subseteq C, C \subseteq \mathbf{R}^n$ convex
- ▶ parametrize \mathcal{E} as $\mathcal{E} = \{Bu + d \mid ||u||_2 \le 1\}$; can assume $B \in \mathbf{S}_{++}^n$
- vol \mathcal{E} is proportional to det *B*; can find \mathcal{E} by solving

 $\begin{array}{ll} \mbox{maximize} & \log \det B \\ \mbox{subject to} & \mbox{sup}_{\|u\|_2 \leq 1} I_C(Bu+d) \leq 0 \end{array}$

(where $I_C(x) = 0$ for $x \in C$ and $I_C(x) = \infty$ for $x \notin C$) convex, but evaluating the constraint can be hard (for general *C*)

• polyhedron
$$\{x \mid a_i^T x \le b_i, i = 1, \dots, m\}$$
:

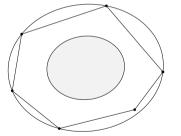
maximize $\log \det B$ subject to $||Ba_i||_2 + a_i^T d \le b_i, \quad i = 1, \dots, m$

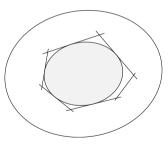
(constraint follows from $\sup_{\|u\|_2 \le 1} a_i^T (Bu + d) = \|Ba_i\|_2 + a_i^T d$)

Convex Optimization

Efficiency of ellipsoidal approximations

- $C \subseteq \mathbf{R}^n$ convex, bounded, with nonempty interior
- Löwner-John ellipsoid, shrunk by a factor n (around its center), lies inside C
- maximum volume inscribed ellipsoid, expanded by a factor n (around its center) covers C
- example (for polyhedra in R²)





• factor *n* can be improved to \sqrt{n} if *C* is symmetric

Outline

Extremal volume ellipsoids

Centering

Classification

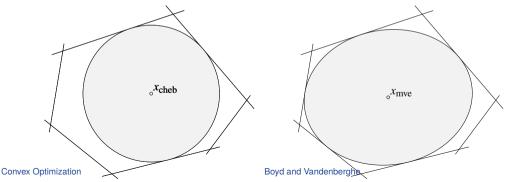
Placement and facility location

Centering

many possible definitions of 'center' of a convex set C

Chebyshev center: center of largest inscribed ball

- for polyhedron, can be found via linear programming
- center of maximum volume inscribed ellipsoid
 - invariant under affine coordinate transformations



Analytic center of a set of inequalities

the analytic center of set of convex inequalities and linear equations

$$f_i(x) \le 0, \quad i = 1, \dots, m, \qquad Fx = g$$

is defined as solution of

minimize
$$-\sum_{i=1}^{m} \log(-f_i(x))$$

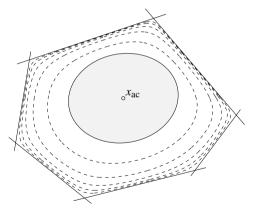
subject to $Fx = g$

- objective is called the log-barrier for the inequalities
- (we'll see later) analytic center more easily computed than MVE or Chebyshev center
- two sets of inequalities can describe the same set, but have different analytic centers

Analytic center of linear inequalities

$$\bullet \ a_i^T x \le b_i, \ i = 1, \dots, m$$

- x_{ac} minimizes $\phi(x) = -\sum_{i=1}^{m} \log(b_i a_i^T x)$
- dashed lines are level curves of ϕ



Inner and outer ellipsoids from analytic center

we have

$$\mathcal{E}_{\text{inner}} \subseteq \{x \mid a_i^T x \le b_i, i = 1, \dots, m\} \subseteq \mathcal{E}_{\text{outer}}$$

where

$$\begin{aligned} \mathcal{E}_{\text{inner}} &= \{ x \mid (x - x_{\text{ac}})^T \nabla^2 \phi(x_{\text{ac}})(x - x_{\text{ac}}) \leq 1 \} \\ \mathcal{E}_{\text{outer}} &= \{ x \mid (x - x_{\text{ac}})^T \nabla^2 \phi(x_{\text{ac}})(x - x_{\text{ac}}) \leq m(m-1) \} \end{aligned}$$

• ellipsoid expansion/shrinkage factor is $\sqrt{m(m-1)}$ (cf. *n* for Löwner-John or max volume inscribed ellpsoids)

Outline

Extremal volume ellipsoids

Centering

Classification

Placement and facility location

Convex Optimization

Linear discrimination

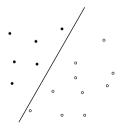
- separate two sets of points $\{x_1, \ldots, x_N\}, \{y_1, \ldots, y_M\}$ by a hyperplane
- *i.e.*, find $a \in \mathbf{R}^n$, $b \in \mathbf{R}$ with

$$a^T x_i + b > 0, \quad i = 1, \dots, N, \qquad a^T y_i + b < 0, \quad i = 1, \dots, M$$

homogeneous in a, b, hence equivalent to

$$a^{T}x_{i} + b \ge 1, \quad i = 1, \dots, N, \qquad a^{T}y_{i} + b \le -1, \quad i = 1, \dots, M$$

a set of linear inequalities in a, b, i.e., an LP feasibility problem



Robust linear discrimination

(Euclidean) distance between hyperplanes

$$\mathcal{H}_1 = \{z \mid a^T z + b = 1\}$$

$$\mathcal{H}_2 = \{z \mid a^T z + b = -1\}$$

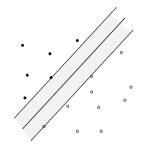
is $dist(\mathcal{H}_1, \mathcal{H}_2) = 2/||a||_2$

to separate two sets of points by maximum margin,

minimize
$$(1/2) ||a||_2^2$$

subject to $a^T x_i + b \ge 1, \quad i = 1, ..., N$
 $a^T y_i + b \le -1, \quad i = 1, ..., M$ (2)

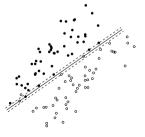
a QP in a, b



Approximate linear separation of non-separable sets

minimize $\mathbf{1}^T u + \mathbf{1}^T v$ subject to $a^T x_i + b \ge 1 - u_i$, $i = 1, \dots, N$, $a^T y_i + b \le -1 + v_i$, $i = 1, \dots, M$ $u \ge 0$, $v \ge 0$

- ▶ an LP in *a*, *b*, *u*, *v*
- at optimum, $u_i = \max\{0, 1 a^T x_i b\}, v_i = \max\{0, 1 + a^T y_i + b\}$
- equivalent to minimizing the sum of violations of the original inequalities



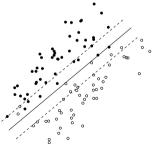
Support vector classifier

minimize
$$||a||_2 + \gamma (\mathbf{1}^T u + \mathbf{1}^T v)$$

subject to $a^T x_i + b \ge 1 - u_i, \quad i = 1, \dots, N$
 $a^T y_i + b \le -1 + v_i, \quad i = 1, \dots, M$
 $u \ge 0, \quad v \ge 0$

produces point on trade-off curve between inverse of margin $2/||a||_2$ and classification error, measured by total slack $\mathbf{1}^T u + \mathbf{1}^T v$

example on previous slide, with $\gamma = 0.1$:



Nonlinear discrimination

▶ separate two sets of points by a nonlinear function f: find $f : \mathbf{R}^n \to \mathbf{R}$ with

$$f(x_i) > 0, \quad i = 1, \dots, N, \qquad f(y_i) < 0, \quad i = 1, \dots, M$$

• choose a linearly parametrized family of functions $f(z) = \theta^T F(z)$

- $\theta \in \mathbf{R}^k$ is parameter
- $F = (F_1, \ldots, F_k) : \mathbf{R}^n \to \mathbf{R}^k$ are basis functions

• solve a set of linear inequalities in θ :

$$\theta^T F(x_i) \ge 1, \quad i = 1, \dots, N, \qquad \theta^T F(y_i) \le -1, \quad i = 1, \dots, M$$

Examples

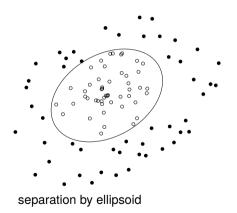
- quadratic discrimination: $f(z) = z^T P z + q^T z + r$, $\theta = (P, q, r)$
- ▶ solve LP feasibility problem with variables $P \in \mathbf{S}^n$, $q \in \mathbf{R}^n$, $r \in \mathbf{R}$

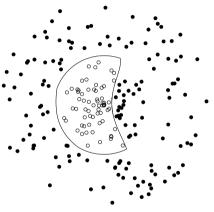
$$x_i^T P x_i + q^T x_i + r \ge 1, \qquad y_i^T P y_i + q^T y_i + r \le -1$$

- ▶ can add additional constraints (*e.g.*, $P \leq -I$ to separate by an ellipsoid)
- polynomial discrimination: F(z) are all monomials up to a given degree d
 e.g., for n = 2, d = 3

$$F(z) = (1, z_1, z_2, z_1^2, z_1z_2, z_2^2, z_1^3, z_1^2z_2, z_1z_2^2, z_2^3)$$

Example





separation by 4th degree polynomial

Outline

Extremal volume ellipsoids

Centering

Classification

Placement and facility location

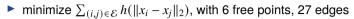
Placement and facility location

- ▶ *N* points with coordinates $x_i \in \mathbf{R}^2$ (or \mathbf{R}^3)
- some positions x_i are given; the other x_i's are variables
- for each pair of points, a cost function $f_{ij}(x_i, x_j)$
- placement problem: minimize $\sum_{i \neq j} f_{ij}(x_i, x_j)$

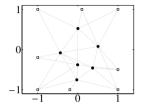
interpretations

- points are locations of plants or warehouses; f_{ij} is transportation cost between facilities i and j
- points are locations of cells in an integrated circuit; *f_{ij}* represents wirelength

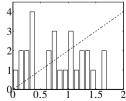
Example

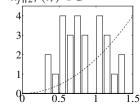


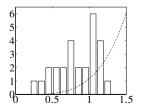
• optimal placements for h(z) = z, $h(z) = z^2$, $h(z) = z^4$



▶ histograms of edge lengths $||x_i - x_j||_2$, $(i, j) \in \mathcal{E}$







Convex Optimization