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Definition

▶ f : Rn → R is convex if dom f is a convex set and for all x, y ∈ dom f , 0 ≤ 𝜃 ≤ 1,

f (𝜃x + (1 − 𝜃)y) ≤ 𝜃f (x) + (1 − 𝜃)f (y)

(x, f (x))

(y, f (y))

▶ f is concave if −f is convex
▶ f is strictly convex if dom f is convex and for x, y ∈ dom f , x ≠ y, 0 < 𝜃 < 1,

f (𝜃x + (1 − 𝜃)y) < 𝜃f (x) + (1 − 𝜃)f (y)
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Examples on R
convex functions:
▶ affine: ax + b on R, for any a, b ∈ R
▶ exponential: eax, for any a ∈ R
▶ powers: x𝛼 on R++, for 𝛼 ≥ 1 or 𝛼 ≤ 0
▶ powers of absolute value: |x|p on R, for p ≥ 1
▶ positive part (relu): max{0, x}

concave functions:
▶ affine: ax + b on R, for any a, b ∈ R
▶ powers: x𝛼 on R++, for 0 ≤ 𝛼 ≤ 1
▶ logarithm: log x on R++
▶ entropy: −x log x on R++
▶ negative part: min{0, x}
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Examples on Rn

convex functions:
▶ affine functions: f (x) = aTx + b
▶ any norm, e.g., the ℓp norms

– ∥x∥p = ( |x1 |p + · · · + |xn |p)1/p for p ≥ 1
– ∥x∥∞ = max{|x1 |, . . . , |xn |}

▶ sum of squares: ∥x∥2
2 = x2

1 + · · · + x2
n

▶ max function: max(x) = max{x1, x2, . . . , xn}
▶ softmax or log-sum-exp function: log(exp x1 + · · · + exp xn)
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Examples on Rm×n

▶ X ∈ Rm×n (m × n matrices) is the variable
▶ general affine function has form

f (X) = tr(ATX) + b =

m∑︁
i=1

n∑︁
j=1

AijXij + b

for some A ∈ Rm×n, b ∈ R
▶ spectral norm (maximum singular value) is convex

f (X) = ∥X∥2 = 𝜎max (X) = (𝜆max (XTX))1/2

▶ log-determinant: for X ∈ Sn
++, f (X) = log det X is concave
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Extended-value extension

▶ suppose f is convex on Rn, with domain dom f
▶ its extended-value extension f̃ is function f̃ : Rn → R ∪ {∞}

f̃ (x) =
{

f (x) x ∈ dom f
∞ x ∉ dom f

▶ often simplifies notation; for example, the condition

0 ≤ 𝜃 ≤ 1 =⇒ f̃ (𝜃x + (1 − 𝜃)y) ≤ 𝜃 f̃ (x) + (1 − 𝜃) f̃ (y)

(as an inequality in R ∪ {∞}), means the same as the two conditions
– dom f is convex
– x, y ∈ dom f , 0 ≤ 𝜃 ≤ 1 =⇒ f (𝜃x + (1 − 𝜃)y) ≤ 𝜃f (x) + (1 − 𝜃)f (y)
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Restriction of a convex function to a line

▶ f : Rn → R is convex if and only if the function g : R → R,

g(t) = f (x + tv), dom g = {t | x + tv ∈ dom f }

is convex (in t) for any x ∈ dom f , v ∈ Rn

▶ can check convexity of f by checking convexity of functions of one variable
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Example

▶ f : Sn → R with f (X) = log det X, dom f = Sn
++

▶ consider line in Sn given by X + tV, X ∈ Sn
++, V ∈ Sn, t ∈ R

g(t) = log det(X + tV)
= log det

(
X1/2

(
I + tX−1/2VX−1/2

)
X1/2

)
= log det X + log det

(
I + tX−1/2VX−1/2

)
= log det X +

n∑︁
i=1

log(1 + t𝜆i)

where 𝜆i are the eigenvalues of X−1/2VX−1/2

▶ g is concave in t (for any choice of X ∈ Sn
++, V ∈ Sn); hence f is concave
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First-order condition
▶ f is differentiable if dom f is open and the gradient

∇f (x) =
(
𝜕f (x)
𝜕x1

,
𝜕f (x)
𝜕x2

, . . . ,
𝜕f (x)
𝜕xn

)
∈ Rn

exists at each x ∈ dom f
▶ 1st-order condition: differentiable f with convex domain is convex if and only if

f (y) ≥ f (x) + ∇f (x)T (y − x) for all x, y ∈ dom f
▶ first order Taylor approximation of convex f is a global underestimator of f

(x, f (x))

f (y)

f (x) + ∇f (x)T (y − x)
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Second-order conditions

▶ f is twice differentiable if dom f is open and the Hessian ∇2f (x) ∈ Sn,

∇2f (x)ij = 𝜕2f (x)
𝜕xi𝜕xj

, i, j = 1, . . . , n,

exists at each x ∈ dom f

▶ 2nd-order conditions: for twice differentiable f with convex domain
– f is convex if and only if ∇2f (x) ⪰ 0 for all x ∈ dom f
– if ∇2f (x) ≻ 0 for all x ∈ dom f , then f is strictly convex
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Examples
▶ quadratic function: f (x) = (1/2)xTPx + qTx + r (with P ∈ Sn)

∇f (x) = Px + q, ∇2f (x) = P
convex if P ⪰ 0 (concave if P ⪯ 0)

▶ least-squares objective: f (x) = ∥Ax − b∥2
2

∇f (x) = 2AT (Ax − b), ∇2f (x) = 2ATA
convex (for any A)

▶ quadratic-over-linear: f (x, y) = x2/y, y > 0

∇2f (x, y) = 2
y3

[
y
−x

] [
y
−x

]T
⪰ 0

convex for y > 0
xy

f
(x
,
y
)

−2

0

2

0

1

2

0

1

2
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More examples

▶ log-sum-exp: f (x) = log
∑n

k=1 exp xk is convex

∇2f (x) = 1
1Tz

diag(z) − 1
(1Tz)2 zzT (zk = exp xk)

▶ to show ∇2f (x) ⪰ 0, we must verify that vT∇2f (x)v ≥ 0 for all v:

vT∇2f (x)v =
(∑k zkv2

k) (
∑

k zk) − (∑k vkzk)2

(∑k zk)2 ≥ 0

since (∑k vkzk)2 ≤ (∑k zkv2
k) (

∑
k zk) (from Cauchy-Schwarz inequality)

▶ geometric mean: f (x) = (∏n
k=1 xk)1/n on Rn

++ is concave (similar proof as above)
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Epigraph and sublevel set

▶ 𝛼-sublevel set of f : Rn → R is C𝛼 = {x ∈ dom f | f (x) ≤ 𝛼}
▶ sublevel sets of convex functions are convex sets (but converse is false)
▶ epigraph of f : Rn → R is epi f = {(x, t) ∈ Rn+1 | x ∈ dom f , f (x) ≤ t}

epi f

f

▶ f is convex if and only if epi f is a convex set
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Jensen’s inequality

▶ basic inequality: if f is convex, then for x, y ∈ dom f , 0 ≤ 𝜃 ≤ 1,

f (𝜃x + (1 − 𝜃)y) ≤ 𝜃f (x) + (1 − 𝜃)f (y)
▶ extension: if f is convex and z is a random variable on dom f ,

f (E z) ≤ E f (z)
▶ basic inequality is special case with discrete distribution

prob(z = x) = 𝜃, prob(z = y) = 1 − 𝜃
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Example: log-normal random variable

▶ suppose X ∼ N(𝜇, 𝜎2)
▶ with f (u) = exp u, Y = f (X) is log-normal
▶ we have E f (X) = exp(𝜇 + 𝜎2/2)
▶ Jensen’s inequality is

f (E X) = exp 𝜇 ≤ E f (X) = exp(𝜇 + 𝜎2/2)

which indeed holds since exp𝜎2/2 > 1
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Example: log-normal random variable

f (E X)
E f (X)

p(f (X))

E X

p(
X)
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Showing a function is convex

methods for establishing convexity of a function f

1. verify definition (often simplified by restricting to a line)

2. for twice differentiable functions, show ∇2f (x) ⪰ 0
– recommended only for very simple functions

3. show that f is obtained from simple convex functions by operations that preserve convexity
– nonnegative weighted sum
– composition with affine function
– pointwise maximum and supremum
– composition
– minimization
– perspective

you’ll mostly use methods 2 and 3
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Nonnegative scaling, sum, and integral

▶ nonnegative multiple: 𝛼f is convex if f is convex, 𝛼 ≥ 0

▶ sum: f1 + f2 convex if f1, f2 convex

▶ infinite sum: if f1, f2, . . . are convex functions, infinite sum
∑∞

i=1 fi is convex

▶ integral: if f (x, 𝛼) is convex in x for each 𝛼 ∈ A, then
∫
𝛼∈A

f (x, 𝛼) d𝛼 is convex

▶ there are analogous rules for concave functions

Convex Optimization Boyd and Vandenberghe 3.19



Composition with affine function

(pre-)composition with affine function: f (Ax + b) is convex if f is convex

examples
▶ log barrier for linear inequalities

f (x) = −
m∑︁

i=1
log(bi − aT

i x), dom f = {x | aT
i x < bi, i = 1, . . . ,m}

▶ norm approximation error: f (x) = ∥Ax − b∥ (any norm)
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Pointwise maximum

if f1, . . . , fm are convex, then f (x) = max{f1 (x), . . . , fm (x)} is convex

examples
▶ piecewise-linear function: f (x) = maxi=1,...,m (aT

i x + bi)
▶ sum of r largest components of x ∈ Rn:

f (x) = x[1] + x[2] + · · · + x[r]

(x[i] is ith largest component of x)

proof: f (x) = max{xi1 + xi2 + · · · + xir | 1 ≤ i1 < i2 < · · · < ir ≤ n}
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Pointwise supremum

if f (x, y) is convex in x for each y ∈ A, then g(x) = supy∈A f (x, y) is convex

examples
▶ distance to farthest point in a set C: f (x) = supy∈C ∥x − y∥
▶ maximum eigenvalue of symmetric matrix: for X ∈ Sn, 𝜆max (X) = sup∥y∥2=1 yTXy is convex
▶ support function of a set C: SC (x) = supy∈C yTx is convex
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Partial minimization

▶ the function g(x) = infy∈C f (x, y) is called the partial minimization of f (w.r.t. y)
▶ if f (x, y) is convex in (x, y) and C is a convex set, then partial minimization g is convex

examples
▶ f (x, y) = xTAx + 2xTBy + yTCy with[

A B
BT C

]
⪰ 0, C ≻ 0

minimizing over y gives g(x) = infy f (x, y) = xT (A − BC−1BT )x
g is convex, hence Schur complement A − BC−1BT ⪰ 0

▶ distance to a set: dist(x, S) = infy∈S ∥x − y∥ is convex if S is convex
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Composition with scalar functions

▶ composition of g : Rn → R and h : R → R is f (x) = h(g(x)) (written as f = h ◦ g)
▶ composition f is convex if

– g convex, h convex, h̃ nondecreasing
– or g concave, h convex, h̃ nonincreasing

(monotonicity must hold for extended-value extension h̃)
▶ proof (for n = 1, differentiable g, h)

f ′′ (x) = h′′ (g(x))g′ (x)2 + h′ (g(x))g′′ (x)

examples
▶ f (x) = exp g(x) is convex if g is convex
▶ f (x) = 1/g(x) is convex if g is concave and positive
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General composition rule

▶ composition of g : Rn → Rk and h : Rk → R is f (x) = h(g(x)) = h(g1 (x), g2 (x), . . . , gk (x))
▶ f is convex if h is convex and for each i one of the following holds

– gi convex, h̃ nondecreasing in its ith argument
– gi concave, h̃ nonincreasing in its ith argument
– gi affine

▶ you will use this composition rule constantly throughout this course
▶ you need to commit this rule to memory
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Examples

▶ log
∑m

i=1 exp gi (x) is convex if gi are convex
▶ f (x) = p(x)2/q(x) is convex if

– p is nonnegative and convex
– q is positive and concave

▶ composition rule subsumes others, e.g.,
– 𝛼f is convex if f is, and 𝛼 ≥ 0
– sum of convex (concave) functions is convex (concave)
– max of convex functions is convex
– min of concave functions is concave
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Constructive convexity verification

▶ start with function f given as expression
▶ build parse tree for expression

– leaves are variables or constants
– nodes are functions of child expressions

▶ use composition rule to tag subexpressions as convex, concave, affine, or none
▶ if root node is labeled convex (concave), then f is convex (concave)
▶ extension: tag sign of each expression, and use sign-dependent monotonicity

▶ this is sufficient to show f is convex (concave), but not necessary
▶ this method for checking convexity (concavity) is readily automated
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Example

the function
f (x, y) = (x − y)2

1 − max(x, y) , x < 1, y < 1

is convex

constructive analysis:
▶ (leaves) x, y, and 1 are affine
▶ max(x, y) is convex; x − y is affine
▶ 1 − max(x, y) is concave
▶ function u2/v is convex, monotone decreasing in v for v > 0
▶ f is composition of u2/v with u = x − y, v = 1 − max(x, y), hence convex
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Example (from dcp.stanford.edu)
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Disciplined convex programming

in disciplined convex programming (DCP) users construct convex and concave functions as
expressions using constructive convex analysis

▶ expressions formed from
– variables,
– constants,
– and atomic functions from a library

▶ atomic functions have known convexity, monotonicity, and sign properties
▶ all subexpressions match general composition rule
▶ a valid DCP function is

– convex-by-construction
– ‘syntactically’ convex (can be checked ‘locally’)

▶ convexity depends only on attributes of atomic functions, not their meanings
– e.g., could swap √· and 4√·, or exp · and (·)+, since their attributes match
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CVXPY example

(x − y)2

1 − max(x, y) , x < 1, y < 1

import cvxpy as cp

x = cp.Variable()

y = cp.Variable()

expr = cp.quad_over_lin(x - y, 1 - cp.maximum(x, y))

expr.curvature # Convex

expr.sign # Positive

expr.is_dcp() # True

(atom quad_over_lin(u,v) includes domain constraint v>0)

Convex Optimization Boyd and Vandenberghe 3.32



DCP is only sufficient

▶ consider convex function f (x) =
√

1 + x2

▶ expression f1 = cp.sqrt(1+cp.square(x)) is not DCP

▶ expression f2 = cp.norm2([1,x]) is DCP

▶ CVXPY will not recognize f1 as convex, even though it represents a convex function
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Perspective

▶ the perspective of a function f : Rn → R is the function g : Rn × R → R,

g(x, t) = tf (x/t), dom g = {(x, t) | x/t ∈ dom f , t > 0}
▶ g is convex if f is convex

examples
▶ f (x) = xTx is convex; so g(x, t) = xTx/t is convex for t > 0
▶ f (x) = − log x is convex; so relative entropy g(x, t) = t log t − t log x is convex on R2

++

Convex Optimization Boyd and Vandenberghe 3.35



Conjugate function

▶ the conjugate of a function f is f ∗ (y) = supx∈dom f (yTx − f (x))
f (x)

(0,−f ∗ (y))

xy

x

▶ f ∗ is convex (even if f is not)
▶ will be useful in chapter 5
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Examples

▶ negative logarithm f (x) = − log x

f ∗ (y) = sup
x>0

(xy + log x) =
{ −1 − log(−y) y < 0
∞ otherwise

▶ strictly convex quadratic, f (x) = (1/2)xTQx with Q ∈ Sn
++

f ∗ (y) = sup
x
(yTx − (1/2)xTQx) = 1

2
yTQ−1y
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Quasiconvex functions
▶ f : Rn → R is quasiconvex if dom f is convex and the sublevel sets

S𝛼 = {x ∈ dom f | f (x) ≤ 𝛼}

are convex for all 𝛼

U

V

a b c

▶ f is quasiconcave if −f is quasiconvex
▶ f is quasilinear if it is quasiconvex and quasiconcave
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Examples

▶
√︁
|x| is quasiconvex on R

▶ ceil(x) = inf{z ∈ Z | z ≥ x} is quasilinear

▶ log x is quasilinear on R++

▶ f (x1, x2) = x1x2 is quasiconcave on R2
++

▶ linear-fractional function

f (x) = aTx + b
cTx + d

, dom f = {x | cTx + d > 0}

is quasilinear
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Example: Internal rate of return

▶ cash flow x = (x0, . . . , xn); xi is payment in period i (to us if xi > 0)
▶ we assume x0 < 0 (i.e., an initial investment) and x0 + x1 + · · · + xn > 0

▶ net present value (NPV) of cash flow x, for interest rate r, is PV(x, r) = ∑n
i=0 (1 + r)−ixi

▶ internal rate of return (IRR) is smallest interest rate for which PV(x, r) = 0:

IRR(x) = inf{r ≥ 0 | PV(x, r) = 0}

▶ IRR is quasiconcave: superlevel set is intersection of open halfspaces

IRR(x) ≥ R ⇐⇒
n∑︁

i=0
(1 + r)−ixi > 0 for 0 ≤ r < R

Convex Optimization Boyd and Vandenberghe 3.41



Properties of quasiconvex functions
▶ modified Jensen inequality: for quasiconvex f

0 ≤ 𝜃 ≤ 1 =⇒ f (𝜃x + (1 − 𝜃)y) ≤ max{f (x), f (y)}
▶ first-order condition: differentiable f with convex domain is quasiconvex if and only if

f (y) ≤ f (x) =⇒ ∇f (x)T (y − x) ≤ 0

x
∇f (x)

▶ sum of quasiconvex functions is not necessarily quasiconvex
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