# **Convex Optimization**

Stephen Boyd Lieven Vandenberghe

Revised slides by Stephen Boyd, Lieven Vandenberghe, and Parth Nobel

# 5. Duality

#### Outline

#### Lagrangian and dual function

Lagrange dual problem

**KKT** conditions

Sensitivity analysis

Problem reformulations

Theorems of alternatives

### Lagrangian

standard form problem (not necessarily convex)

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & h_i(x) = 0, \quad i = 1, \dots, p \end{array}$$

variable  $x \in \mathbf{R}^n$ , domain  $\mathcal{D}$ , optimal value  $p^*$ 

• Lagrangian:  $L: \mathbf{R}^n \times \mathbf{R}^m \times \mathbf{R}^p \to \mathbf{R}$ , with dom  $L = \mathcal{D} \times \mathbf{R}^m \times \mathbf{R}^p$ ,

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$

- weighted sum of objective and constraint functions
- $-\lambda_i$  is Lagrange multiplier associated with  $f_i(x) \le 0$
- $v_i$  is Lagrange multiplier associated with  $h_i(x) = 0$

#### **Convex Optimization**

### Lagrange dual function

• Lagrange dual function:  $g : \mathbf{R}^m \times \mathbf{R}^p \to \mathbf{R}$ ,

$$g(\lambda,\nu) = \inf_{x \in \mathcal{D}} L(x,\lambda,\nu) = \inf_{x \in \mathcal{D}} \left( f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

• g is concave, can be  $-\infty$  for some  $\lambda$ ,  $\nu$ 

- lower bound property: if  $\lambda \ge 0$ , then  $g(\lambda, \nu) \le p^*$
- proof: if  $\tilde{x}$  is feasible and  $\lambda \geq 0$ , then

$$f_0(\tilde{x}) \ge L(\tilde{x}, \lambda, \nu) \ge \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = g(\lambda, \nu)$$

minimizing over all feasible  $\tilde{x}$  gives  $p^* \ge g(\lambda, \nu)$ 

#### Least-norm solution of linear equations

minimize  $x^T x$ subject to Ax = b

- Lagrangian is  $L(x, v) = x^T x + v^T (Ax b)$
- ▶ to minimize *L* over *x*, set gradient equal to zero:

$$\nabla_x L(x, v) = 2x + A^T v = 0 \implies x = -(1/2)A^T v$$

lug x into L to obtain

$$g(v) = L((-1/2)A^T v, v) = -\frac{1}{4}v^T A A^T v - b^T v$$

▶ lower bound property:  $p^{\star} \ge -(1/4)v^T A A^T v - b^T v$  for all v

**Convex Optimization** 

#### Standard form LP

minimize  $c^T x$ subject to Ax = b,  $x \ge 0$ 

Lagrangian is

$$L(x,\lambda,\nu) = c^T x + \nu^T (Ax - b) - \lambda^T x = -b^T \nu + (c + A^T \nu - \lambda)^T x$$

 $\blacktriangleright$  *L* is affine in *x*, so

$$g(\lambda, \nu) = \inf_{x} L(x, \lambda, \nu) = \begin{cases} -b^{T}\nu & A^{T}\nu - \lambda + c = 0\\ -\infty & \text{otherwise} \end{cases}$$

▶ *g* is linear on affine domain  $\{(\lambda, \nu) | A^T \nu - \lambda + c = 0\}$ , hence concave

• lower bound property:  $p^* \ge -b^T v$  if  $A^T v + c \ge 0$ 

#### **Convex Optimization**

## Equality constrained norm minimization

minimize ||x||subject to Ax = b

dual function is

$$g(v) = \inf_{x} (||x|| - v^{T}Ax + b^{T}v) = \begin{cases} b^{T}v & ||A^{T}v||_{*} \le 1\\ -\infty & \text{otherwise} \end{cases}$$

where  $\|v\|_* = \sup_{\|u\| \le 1} u^T v$  is dual norm of  $\|\cdot\|$ 

• lower bound property:  $p^{\star} \ge b^T v$  if  $||A^T v||_* \le 1$ 

## **Two-way partitioning**

minimize  $x^T W x$ subject to  $x_i^2 = 1$ , i = 1, ..., n

- a nonconvex problem; feasible set contains  $2^n$  discrete points
- ▶ interpretation: partition  $\{1, ..., n\}$  in two sets encoded as  $x_i = 1$  and  $x_i = -1$
- $W_{ij}$  is cost of assigning *i*, *j* to the same set;  $-W_{ij}$  is cost of assigning to different sets
- dual function is

$$g(\nu) = \inf_{x} \left( x^T W x + \sum_{i} \nu_i (x_i^2 - 1) \right) = \inf_{x} x^T \left( W + \operatorname{diag}(\nu) \right) x - \mathbf{1}^T \nu = \begin{cases} -\mathbf{1}^T \nu & W + \operatorname{diag}(\nu) \ge 0\\ -\infty & \text{otherwise} \end{cases}$$

► lower bound property:  $p^* \ge -\mathbf{1}^T v$  if  $W + \mathbf{diag}(v) \ge 0$ 

#### **Convex Optimization**

#### Lagrange dual and conjugate function

minimize  $f_0(x)$ subject to  $Ax \le b$ , Cx = d

dual function

$$g(\lambda, \nu) = \inf_{x \in \mathbf{dom} f_0} \left( f_0(x) + (A^T \lambda + C^T \nu)^T x - b^T \lambda - d^T \nu \right)$$
$$= -f_0^* (-A^T \lambda - C^T \nu) - b^T \lambda - d^T \nu$$

where  $f^*(y) = \sup_{x \in \mathbf{dom} f} (y^T x - f(x))$  is conjugate of  $f_0$ 

- simplifies derivation of dual if conjugate of  $f_0$  is known
- example: entropy maximization

$$f_0(x) = \sum_{i=1}^n x_i \log x_i, \qquad f_0^*(y) = \sum_{i=1}^n e^{y_i - 1}$$

**Convex Optimization** 

### Outline

Lagrangian and dual function

#### Lagrange dual problem

KKT conditions

Sensitivity analysis

Problem reformulations

Theorems of alternatives

## The Lagrange dual problem

#### (Lagrange) dual problem

 $\begin{array}{ll} \text{maximize} & g(\lambda, \nu) \\ \text{subject to} & \lambda \geq 0 \end{array}$ 

- Finds best lower bound on  $p^{\star}$ , obtained from Lagrange dual function
- > a convex optimization problem, even if original primal problem is not
- dual optimal value denoted d\*
- $\lambda$ ,  $\nu$  are dual feasible if  $\lambda \ge 0$ ,  $(\lambda, \nu) \in \operatorname{dom} g$
- often simplified by making implicit constraint  $(\lambda, \nu) \in \mathbf{dom} g$  explicit

### Example: standard form LP

(see page 5.5)

primal standard form LP:

 $\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax = b\\ & x \ge 0 \end{array}$ 

dual problem is

 $\begin{array}{ll} \text{maximize} & g(\lambda, \nu) \\ \text{subject to} & \lambda \geq 0 \end{array}$ 

with  $g(\lambda, \nu) = -b^T \nu$  if  $A^T \nu - \lambda + c = 0, -\infty$  otherwise

• make implicit constraint explicit, and eliminate  $\lambda$  to obtain (transformed) dual problem

maximize  $-b^T v$ subject to  $A^T v + c \ge 0$ 

## Weak and strong duality

weak duality:  $d^{\star} \leq p^{\star}$ 

- always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems, e.g., solving the SDP

```
maximize -\mathbf{1}^T \mathbf{v}
subject to W + \mathbf{diag}(\mathbf{v}) \ge 0
```

gives a lower bound for the two-way partitioning problem on page 5.7

#### strong duality: $d^{\star} = p^{\star}$

- does not hold in general
- (usually) holds for convex problems
- conditions that guarantee strong duality in convex problems are called constraint qualifications

### Slater's constraint qualification

strong duality holds for a convex problem

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \le 0$ ,  $i = 1, ..., m$   
 $Ax = b$ 

if it is strictly feasible, *i.e.*, there is an  $x \in int \mathcal{D}$  with  $f_i(x) < 0$ , i = 1, ..., m, Ax = b

- ▶ also guarantees that the dual optimum is attained (if  $p^* > -\infty$ )
- can be sharpened: e.g.,
  - can replace  $\operatorname{int} \mathcal{D}$  with  $\operatorname{relint} \mathcal{D}$  (interior relative to affine hull)
  - linear inequalities do not need to hold with strict inequality
- there are many other types of constraint qualifications

## Inequality form LP

primal problem

 $\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax \leq b \end{array}$ 

dual function

$$g(\lambda) = \inf_{x} \left( (c + A^{T} \lambda)^{T} x - b^{T} \lambda \right) = \begin{cases} -b^{T} \lambda & A^{T} \lambda + c = 0\\ -\infty & \text{otherwise} \end{cases}$$

dual problem

maximize 
$$-b^T \lambda$$
  
subject to  $A^T \lambda + c = 0, \quad \lambda \ge 0$ 

For the sharpened Slater's condition:  $p^* = d^*$  if the primal problem is feasible

▶ in fact,  $p^* = d^*$  except when primal and dual are both infeasible

### **Quadratic program**

primal problem (assume  $P \in \mathbf{S}_{++}^n$ )

minimize  $x^T P x$ subject to  $Ax \leq b$ 

dual function

$$g(\lambda) = \inf_{x} \left( x^{T} P x + \lambda^{T} (A x - b) \right) = -\frac{1}{4} \lambda^{T} A P^{-1} A^{T} \lambda - b^{T} \lambda$$

dual problem

maximize 
$$-(1/4)\lambda^T A P^{-1} A^T \lambda - b^T \lambda$$
  
subject to  $\lambda \ge 0$ 

For the sharpened Slater's condition:  $p^* = d^*$  if the primal problem is feasible

▶ in fact,  $p^* = d^*$  always

### **Geometric interpretation**

- ▶ for simplicity, consider problem with one constraint  $f_1(x) \le 0$
- ►  $G = \{(f_1(x), f_0(x)) \mid x \in D\}$  is set of achievable (constraint, objective) values
- interpretation of dual function:  $g(\lambda) = \inf_{(u,t) \in \mathcal{G}} (t + \lambda u)$



- $\lambda u + t = g(\lambda)$  is (non-vertical) supporting hyperplane to  $\mathcal{G}$
- hyperplane intersects *t*-axis at  $t = g(\lambda)$

# **Epigraph variation**

▶ same with  $\mathcal{G}$  replaced with  $\mathcal{A} = \{(u, t) | f_1(x) \le u, f_0(x) \le t \text{ for some } x \in \mathcal{D}\}$ 



- strong duality holds if there is a non-vertical supporting hyperplane to  $\mathcal{A}$  at  $(0, p^{\star})$
- ▶ for convex problem,  $\mathcal{A}$  is convex, hence has supporting hyperplane at  $(0, p^{\star})$
- Slater's condition: if there exist  $(\tilde{u}, \tilde{t}) \in \mathcal{A}$  with  $\tilde{u} < 0$ , then supporting hyperplane at  $(0, p^*)$  must be non-vertical

### Outline

Lagrangian and dual function

Lagrange dual problem

#### KKT conditions

Sensitivity analysis

Problem reformulations

Theorems of alternatives

#### **Complementary slackness**

▶ assume strong duality holds,  $x^*$  is primal optimal,  $(\lambda^*, \nu^*)$  is dual optimal

$$f_0(x^{\star}) = g(\lambda^{\star}, v^{\star}) = \inf_x \left( f_0(x) + \sum_{i=1}^m \lambda_i^{\star} f_i(x) + \sum_{i=1}^p v_i^{\star} h_i(x) \right)$$
$$\leq f_0(x^{\star}) + \sum_{i=1}^m \lambda_i^{\star} f_i(x^{\star}) + \sum_{i=1}^p v_i^{\star} h_i(x^{\star})$$
$$\leq f_0(x^{\star})$$

- hence, the two inequalities hold with equality
- $x^*$  minimizes  $L(x, \lambda^*, \nu^*)$
- ►  $\lambda_i^{\star} f_i(x^{\star}) = 0$  for i = 1, ..., m (known as **complementary slackness**):

$$\lambda_i^{\star} > 0 \implies f_i(x^{\star}) = 0, \qquad f_i(x^{\star}) < 0 \implies \lambda_i^{\star} = 0$$

## Karush-Kuhn-Tucker (KKT) conditions

the **KKT conditions** (for a problem with differentiable  $f_i$ ,  $h_i$ ) are

- 1. primal constraints:  $f_i(x) \le 0, i = 1, ..., m, h_i(x) = 0, i = 1, ..., p$
- 2. dual constraints:  $\lambda \geq 0$
- 3. complementary slackness:  $\lambda_i f_i(x) = 0, i = 1, \dots, m$
- 4. gradient of Lagrangian with respect to *x* vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$$

if strong duality holds and x,  $\lambda$ ,  $\nu$  are optimal, they satisfy the KKT conditions

## KKT conditions for convex problem

if  $\tilde{x}, \tilde{\lambda}, \tilde{\nu}$  satisfy KKT for a convex problem, then they are optimal:

- From complementary slackness:  $f_0(\tilde{x}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$
- From 4th condition (and convexity):  $g(\tilde{\lambda}, \tilde{\nu}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$

hence,  $f_0(\tilde{x}) = g(\tilde{\lambda}, \tilde{\nu})$ 

if Slater's condition is satisfied, then

x is optimal if and only if there exist  $\lambda$ , v that satisfy KKT conditions

- recall that Slater implies strong duality, and dual optimum is attained
- generalizes optimality condition  $\nabla f_0(x) = 0$  for unconstrained problem

### Outline

Lagrangian and dual function

Lagrange dual problem

KKT conditions

#### Sensitivity analysis

Problem reformulations

Theorems of alternatives

## Perturbation and sensitivity analysis

#### (unperturbed) optimization problem and its dual

$$\begin{array}{ll} \text{minimize} & f_0(x) & \text{maximize} & g(\lambda,\nu) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m & \text{subject to} & \lambda \geq 0 \\ & h_i(x) = 0, \quad i=1,\ldots,p \end{array}$$

#### perturbed problem and its dual

minimoize  $f_0(x)$ subject to  $f_i(x) \le u_i$ , i = 1, ..., m $h_i(x) = v_i$ , i = 1, ..., p  $\begin{array}{ll} \mbox{maximize} & g(\lambda,\nu) - u^T\lambda - \nu^T\nu\\ \mbox{subject to} & \lambda \geq 0 \end{array}$ 

- $\blacktriangleright$  x is primal variable; u, v are parameters
- $p^{\star}(u, v)$  is optimal value as a function of u, v
- p\*(0,0) is optimal value of unperturbed problem

#### Global sensitivity via duality

- ▶ assume strong duality holds for unperturbed problem, with  $\lambda^*$ ,  $\nu^*$  dual optimal
- apply weak duality to perturbed problem:

$$p^{\star}(u,v) \geq g(\lambda^{\star},v^{\star}) - u^T \lambda^{\star} - v^T v^{\star} = p^{\star}(0,0) - u^T \lambda^{\star} - v^T v^{\star}$$

#### implications

- if  $\lambda_i^{\star}$  large:  $p^{\star}$  increases greatly if we tighten constraint *i* ( $u_i < 0$ )
- if  $\lambda_i^{\star}$  small:  $p^{\star}$  does not decrease much if we loosen constraint *i* ( $u_i > 0$ )
- if  $v_i^{\star}$  large and positive:  $p^{\star}$  increases greatly if we take  $v_i < 0$
- if  $v_i^{\star}$  large and negative:  $p^{\star}$  increases greatly if we take  $v_i > 0$
- if  $v_i^{\star}$  small and positive:  $p^{\star}$  does not decrease much if we take  $v_i > 0$
- if  $v_i^{\star}$  small and negative:  $p^{\star}$  does not decrease much if we take  $v_i < 0$

## Local sensitivity via duality

1

if (in addition)  $p^{\star}(u, v)$  is differentiable at (0, 0), then

$$\lambda_i^{\star} = -\frac{\partial p^{\star}(0,0)}{\partial u_i}, \qquad v_i^{\star} = -\frac{\partial p^{\star}(0,0)}{\partial v_i}$$

proof (for  $\lambda_i^{\star}$ ): from global sensitivity result,

$$\frac{\partial p^{\star}(0,0)}{\partial u_{i}} = \lim_{t \searrow 0} \frac{p^{\star}(te_{i},0) - p^{\star}(0,0)}{t} \ge -\lambda_{i}^{\star} \qquad \frac{\partial p^{\star}(0,0)}{\partial u_{i}} = \lim_{t \nearrow 0} \frac{p^{\star}(te_{i},0) - p^{\star}(0,0)}{t} \le -\lambda_{i}^{\star}$$
hence, equality
$$p^{\star}(u) \text{ for a problem with one (inequality) constraint:} \qquad u = 0 \qquad u = 0$$

$$p^{\star}(0) - \lambda^{\star} u$$
Convex Optimization
Boyd and Vandenberghe

5.25

### Outline

Lagrangian and dual function

Lagrange dual problem

KKT conditions

Sensitivity analysis

#### **Problem reformulations**

Theorems of alternatives

## **Duality and problem reformulations**

- equivalent formulations of a problem can lead to very different duals
- reformulating primal problem can be useful when dual is difficult to derive, or uninteresting

#### common reformulations

- introduce new variables and equality constraints
- make explicit constraints implicit or vice-versa
- ► transform objective or constraint functions, *e.g.*, replace  $f_0(x)$  by  $\phi(f_0(x))$  with  $\phi$  convex, increasing

### Introducing new variables and equality constraints

- unconstrained problem: minimize  $f_0(Ax + b)$
- dual function is constant:  $g = \inf_x L(x) = \inf_x f_0(Ax + b) = p^*$
- we have strong duality, but dual is quite useless
- introduce new variable *y* and equality constraints y = Ax + b

minimize  $f_0(y)$ subject to Ax + b - y = 0

dual of reformulated problem is

maximize  $b^T v - f_0^*(v)$ subject to  $A^T v = 0$ 

• a nontrivial, useful dual (assuming the conjugate  $f_0^*$  is easy to express)

## **Example: Norm approximation**

- minimize ||Ax b||
- reformulate as minimize ||y|| subject to y = Ax b
- recall conjugate of general norm:

$$||z||^* = \begin{cases} 0 & ||z||_* \le 1\\ \infty & \text{otherwise} \end{cases}$$

dual of (reformulated) norm approximation problem:

$$\begin{array}{ll} \text{maximize} & b^T \nu \\ \text{subject to} & A^T \nu = 0, \quad \|\nu\|_* \leq 1 \end{array}$$

### Outline

Lagrangian and dual function

Lagrange dual problem

**KKT** conditions

Sensitivity analysis

Problem reformulations

Theorems of alternatives

#### **Theorems of alternatives**

- consider two systems of inequality and equality constraints
- called weak alternatives if no more than one system is feasible
- called strong alternatives if exactly one of them is feasible
- examples: for any  $a \in \mathbf{R}$ , with variable  $x \in \mathbf{R}$ ,
  - -x > a and  $x \le a 1$  are weak alternatives
  - -x > a and  $x \le a$  are strong alternatives
- a theorem of alternatives states that two inequality systems are (weak or strong) alternatives
- can be considered the extension of duality to feasibility problems

## **Feasibility problems**

consider system of (not necessarily convex) inequalities and equalities

$$f_i(x) \le 0, \quad i = 1, \dots, m, \quad h_i(x) = 0, \quad i = 1, \dots, p$$

express as feasibility problem

minimize 0  
subject to 
$$f_i(x) \le 0$$
,  $i = 1, ..., m$ ,  
 $h_i(x) = 0$ ,  $i = 1, ..., p$ 

• if system if feasible,  $p^* = 0$ ; if not,  $p^* = \infty$ 

## **Duality for feasibility problems**

- dual function of feasibility problem is  $g(\lambda, \nu) = \inf_x \left( \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$
- for  $\lambda \geq 0$ , we have  $g(\lambda, \nu) \leq p^{\star}$
- it follows that feasibility of the inequality system

 $\lambda \geq 0, \qquad g(\lambda, \nu) > 0$ 

implies the original system is infeasible

- so this is a weak alternative to original system
- it is strong if  $f_i$  convex,  $h_i$  affine, and a constraint qualification holds
- g is positive homogeneous so we can write alternative system as

$$\lambda \ge 0, \qquad g(\lambda, \nu) \ge 1$$

## Example: Nonnegative solution of linear equations

consider system

$$Ax = b, \qquad x \ge$$

$$\bullet \text{ dual function is } g(\lambda, \nu) = \begin{cases} -\nu^T b & A^T \nu = \lambda \\ -\infty & \text{otherwise} \end{cases}$$

► can express strong alternative of Ax = b,  $x \ge 0$  as

$$A^T \nu \ge 0, \qquad \nu^T b \le -1$$

(we can replace  $v^T b \leq -1$  with  $v^T b = -1$ )

**Convex Optimization** 

#### Boyd and Vandenberghe

0

#### Farkas' lemma

Farkas' lemma:

$$Ax \le 0$$
,  $c^T x < 0$  and  $A^T y + c = 0$ ,  $y \ge 0$ 

are strong alternatives

#### proof: use (strong) duality for (feasible) LP

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq 0 \end{array}$ 

#### Investment arbitrage

- we invest  $x_j$  in each of n assets  $1, \ldots, n$  with prices  $p_1, \ldots, p_n$
- our initial cost is  $p^T x$
- at the end of the investment period there are only *m* possible outcomes i = 1, ..., m
- V<sub>ij</sub> is the **payoff** or final value of asset j in outcome i
- First investment is risk-free (cash):  $p_1 = 1$  and  $V_{i1} = 1$  for all *i*
- **arbitrage** means there is *x* with  $p^T x < 0$ ,  $Vx \ge 0$
- arbitrage means we receive money up front, and our investment cannot lose
- standard assumption in economics: the prices are such that there is no arbitrage

## Absence of arbitrage

- ▶ by Farkas' lemma, there is no arbitrage  $\iff$  there exists  $y \in \mathbf{R}^m_+$  with  $V^T y = p$
- Since first column of V is 1, we have  $\mathbf{1}^T y = 1$
- y is interpreted as a **risk-neutral probability** on the outcomes  $1, \ldots, m$
- $\triangleright$  V<sup>T</sup>y are the expected values of the payoffs under the risk-neutral probability
- interpretation of  $V^T y = p$ :

asset prices equal their expected payoff under the risk-neutral probability

► arbitrage theorem: there is no arbitrage ⇔ there exists a risk-neutral probability distribution under which each asset price is its expected payoff

### Example

$$V = \begin{bmatrix} 1.0 & 0.5 & 0.0 \\ 1.0 & 0.8 & 0.0 \\ 1.0 & 1.0 & 1.0 \\ 1.0 & 1.3 & 4.0 \end{bmatrix}, \qquad p = \begin{bmatrix} 1.0 \\ 0.9 \\ 0.3 \end{bmatrix}, \qquad \tilde{p} = \begin{bmatrix} 1.0 \\ 0.8 \\ 0.7 \end{bmatrix}$$

▶ with prices *p*, there is an arbitrage

$$x = \begin{bmatrix} 6.2 \\ -7.7 \\ 1.5 \end{bmatrix}, \qquad p^{T}x = -0.2, \qquad \mathbf{1}^{T}x = 0, \qquad Vx = \begin{bmatrix} 2.35 \\ 0.04 \\ 0.00 \\ 2.19 \end{bmatrix}$$

• with prices  $\tilde{p}$ , there is no arbitrage, with risk-neutral probability

$$y = \begin{bmatrix} 0.36\\ 0.27\\ 0.26\\ 0.11 \end{bmatrix} \qquad V^T y = \begin{bmatrix} 1.0\\ 0.8\\ 0.7 \end{bmatrix}$$

**Convex Optimization**