Convex Optimization

Stephen Boyd Lieven Vandenberghe

Revised slides by Stephen Boyd, Lieven Vandenberghe, and Parth Nobel

5. Duality

Outline

Lagrangian and dual function

Lagrange dual problem

KKT conditions

Sensitivity analysis

Problem reformulations

Theorems of alternatives

Lagrangian

- standard form problem (not necessarily convex)

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

variable $x \in \mathbf{R}^{n}$, domain \mathcal{D}, optimal value p^{\star}

- Lagrangian: $L: \mathbf{R}^{n} \times \mathbf{R}^{m} \times \mathbf{R}^{p} \rightarrow \mathbf{R}$, with $\operatorname{dom} L=\mathcal{D} \times \mathbf{R}^{m} \times \mathbf{R}^{p}$,

$$
L(x, \lambda, v)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} v_{i} h_{i}(x)
$$

- weighted sum of objective and constraint functions
$-\lambda_{i}$ is Lagrange multiplier associated with $f_{i}(x) \leq 0$
- v_{i} is Lagrange multiplier associated with $h_{i}(x)=0$

Lagrange dual function

- Lagrange dual function: $g: \mathbf{R}^{m} \times \mathbf{R}^{p} \rightarrow \mathbf{R}$,

$$
g(\lambda, v)=\inf _{x \in \mathcal{D}} L(x, \lambda, v)=\inf _{x \in \mathcal{D}}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} v_{i} h_{i}(x)\right)
$$

- g is concave, can be $-\infty$ for some λ, v
- lower bound property: if $\lambda \geq 0$, then $g(\lambda, v) \leq p^{\star}$
- proof: if \tilde{x} is feasible and $\lambda \geq 0$, then

$$
f_{0}(\tilde{x}) \geq L(\tilde{x}, \lambda, v) \geq \inf _{x \in \mathcal{D}} L(x, \lambda, v)=g(\lambda, v)
$$

minimizing over all feasible \tilde{x} gives $p^{\star} \geq g(\lambda, v)$

Least-norm solution of linear equations

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} x \\
\text { subject to } & A x=b
\end{array}
$$

- Lagrangian is $L(x, v)=x^{T} x+v^{T}(A x-b)$
- to minimize L over x, set gradient equal to zero:

$$
\nabla_{x} L(x, v)=2 x+A^{T} v=0 \quad \Longrightarrow \quad x=-(1 / 2) A^{T} v
$$

- plug x into L to obtain

$$
g(v)=L\left((-1 / 2) A^{T} v, v\right)=-\frac{1}{4} v^{T} A A^{T} v-b^{T} v
$$

- lower bound property: $p^{\star} \geq-(1 / 4) v^{T} A A^{T} v-b^{T} v$ for all v

Standard form LP

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b, \quad x \geq 0
\end{array}
$$

- Lagrangian is

$$
L(x, \lambda, v)=c^{T} x+v^{T}(A x-b)-\lambda^{T} x=-b^{T} v+\left(c+A^{T} v-\lambda\right)^{T} x
$$

- L is affine in x, so

$$
g(\lambda, v)=\inf _{x} L(x, \lambda, v)= \begin{cases}-b^{T} v & A^{T} v-\lambda+c=0 \\ -\infty & \text { otherwise }\end{cases}
$$

- g is linear on affine domain $\left\{(\lambda, v) \mid A^{T} v-\lambda+c=0\right\}$, hence concave
- lower bound property: $p^{\star} \geq-b^{T} v$ if $A^{T} v+c \geq 0$

Equality constrained norm minimization

```
minimize |x|
subject to }Ax=
```

- dual function is

$$
g(v)=\inf _{x}\left(\|x\|-v^{T} A x+b^{T} v\right)= \begin{cases}b^{T} v & \left\|A^{T} v\right\|_{*} \leq 1 \\ -\infty & \text { otherwise }\end{cases}
$$

where $\|v\|_{*}=\sup _{\|u\| \leq 1} u^{T} v$ is dual norm of $\|\cdot\|$

- lower bound property: $p^{\star} \geq b^{T} v$ if $\left\|A^{T} v\right\|_{*} \leq 1$

Two-way partitioning

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} W x \\
\text { subject to } & x_{i}^{2}=1, \quad i=1, \ldots, n
\end{array}
$$

- a nonconvex problem; feasible set contains 2^{n} discrete points
- interpretation: partition $\{1, \ldots, n\}$ in two sets encoded as $x_{i}=1$ and $x_{i}=-1$
- $W_{i j}$ is cost of assigning i, j to the same set; $-W_{i j}$ is cost of assigning to different sets
- dual function is

$$
g(v)=\inf _{x}\left(x^{T} W x+\sum_{i} v_{i}\left(x_{i}^{2}-1\right)\right)=\inf _{x} x^{T}(W+\boldsymbol{\operatorname { d i a g }}(v)) x-\mathbf{1}^{T} v= \begin{cases}-\mathbf{1}^{T} v & W+\boldsymbol{\operatorname { d i a g }}(v) \geq 0 \\ -\infty & \text { otherwise }\end{cases}
$$

- lower bound property: $p^{\star} \geq-\mathbf{1}^{T} v$ if $W+\boldsymbol{\operatorname { d i a g }}(v) \geq 0$

Lagrange dual and conjugate function

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & A x \leq b, \quad C x=d
\end{array}
$$

- dual function

$$
\begin{aligned}
g(\lambda, v) & =\inf _{x \in \operatorname{dom} f_{0}}\left(f_{0}(x)+\left(A^{T} \lambda+C^{T} v\right)^{T} x-b^{T} \lambda-d^{T} v\right) \\
& =-f_{0}^{*}\left(-A^{T} \lambda-C^{T} v\right)-b^{T} \lambda-d^{T} v
\end{aligned}
$$

where $f^{*}(y)=\sup _{x \in \operatorname{dom} f}\left(y^{T} x-f(x)\right)$ is conjugate of f_{0}

- simplifies derivation of dual if conjugate of f_{0} is known
- example: entropy maximization

$$
f_{0}(x)=\sum_{i=1}^{n} x_{i} \log x_{i}, \quad f_{0}^{*}(y)=\sum_{i=1}^{n} e^{y_{i}-1}
$$

Outline

Lagrangian and dual function

Lagrange dual problem

KKT conditions

Sensitivity analysis

Problem reformulations

Theorems of alternatives

The Lagrange dual problem

(Lagrange) dual problem

$$
\begin{array}{ll}
\operatorname{maximize} & g(\lambda, v) \\
\text { subject to } & \lambda \geq 0
\end{array}
$$

- finds best lower bound on p^{\star}, obtained from Lagrange dual function
- a convex optimization problem, even if original primal problem is not
- dual optimal value denoted d^{\star}
- λ, v are dual feasible if $\lambda \geq 0,(\lambda, v) \in \boldsymbol{\operatorname { d o m }} g$
- often simplified by making implicit constraint $(\lambda, v) \in \boldsymbol{d o m} g$ explicit

Example: standard form LP

(see page 5.5)

- primal standard form LP:

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{array}
$$

- dual problem is

$$
\begin{array}{ll}
\text { maximize } & g(\lambda, v) \\
\text { subject to } & \lambda \geq 0
\end{array}
$$

with $g(\lambda, v)=-b^{T} v$ if $A^{T} v-\lambda+c=0,-\infty$ otherwise

- make implicit constraint explicit, and eliminate λ to obtain (transformed) dual problem

$$
\begin{array}{ll}
\operatorname{maximize} & -b^{T} v \\
\text { subject to } & A^{T} v+c \geq 0
\end{array}
$$

Weak and strong duality

weak duality: $d^{\star} \leq p^{\star}$

- always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems, e.g., solving the SDP

$$
\begin{array}{ll}
\operatorname{maximize} & \mathbf{1}^{T} v \\
\text { subject to } & W+\boldsymbol{\operatorname { d i a g }}(v) \geq 0
\end{array}
$$

gives a lower bound for the two-way partitioning problem on page 5.7
strong duality: $d^{\star}=p^{\star}$

- does not hold in general
- (usually) holds for convex problems
- conditions that guarantee strong duality in convex problems are called constraint qualifications

Slater's constraint qualification

strong duality holds for a convex problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

if it is strictly feasible, i.e., there is an $x \in \operatorname{int} \mathcal{D}$ with $f_{i}(x)<0, i=1, \ldots, m, A x=b$

- also guarantees that the dual optimum is attained (if $p^{\star}>-\infty$)
- can be sharpened: e.g.,
- can replace int \mathcal{D} with relint \mathcal{D} (interior relative to affine hull)
- linear inequalities do not need to hold with strict inequality
- there are many other types of constraint qualifications

Inequality form LP

primal problem

$$
\begin{array}{ll}
\text { minimize } & c^{T} x \\
\text { subject to } & A x \leq b
\end{array}
$$

dual function

$$
g(\lambda)=\inf _{x}\left(\left(c+A^{T} \lambda\right)^{T} x-b^{T} \lambda\right)= \begin{cases}-b^{T} \lambda & A^{T} \lambda+c=0 \\ -\infty & \text { otherwise }\end{cases}
$$

dual problem

$$
\begin{array}{ll}
\operatorname{maximize} & -b^{T} \lambda \\
\text { subject to } & A^{T} \lambda+c=0, \quad \lambda \geq 0
\end{array}
$$

- from the sharpened Slater's condition: $p^{\star}=d^{\star}$ if the primal problem is feasible
- in fact, $p^{\star}=d^{\star}$ except when primal and dual are both infeasible

Quadratic program

primal problem (assume $P \in \mathbf{S}_{++}^{n}$)

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} P x \\
\text { subject to } & A x \leq b
\end{array}
$$

dual function

$$
g(\lambda)=\inf _{x}\left(x^{T} P x+\lambda^{T}(A x-b)\right)=-\frac{1}{4} \lambda^{T} A P^{-1} A^{T} \lambda-b^{T} \lambda
$$

dual problem

$$
\begin{array}{ll}
\text { maximize } & -(1 / 4) \lambda^{T} A P^{-1} A^{T} \lambda-b^{T} \lambda \\
\text { subject to } & \lambda \geq 0
\end{array}
$$

- from the sharpened Slater's condition: $p^{\star}=d^{\star}$ if the primal problem is feasible
- in fact, $p^{\star}=d^{\star}$ always

Geometric interpretation

- for simplicity, consider problem with one constraint $f_{1}(x) \leq 0$
- $\mathcal{G}=\left\{\left(f_{1}(x), f_{0}(x)\right) \mid x \in \mathcal{D}\right\}$ is set of achievable (constraint, objective) values
- interpretation of dual function: $g(\lambda)=\inf _{(u, t) \in \mathcal{G}}(t+\lambda u)$

- $\lambda u+t=g(\lambda)$ is (non-vertical) supporting hyperplane to \mathcal{G}
- hyperplane intersects t-axis at $t=g(\lambda)$

Epigraph variation

- same with \mathcal{G} replaced with $\mathcal{A}=\left\{(u, t) \mid f_{1}(x) \leq u, f_{0}(x) \leq t\right.$ for some $\left.x \in \mathcal{D}\right\}$

- strong duality holds if there is a non-vertical supporting hyperplane to \mathcal{A} at $\left(0, p^{\star}\right)$
- for convex problem, \mathcal{A} is convex, hence has supporting hyperplane at ($0, p^{\star}$)
- Slater's condition: if there exist $(\tilde{u}, \tilde{t}) \in \mathcal{A}$ with $\tilde{u}<0$, then supporting hyperplane at $\left(0, p^{\star}\right)$ must be non-vertical

Outline

Lagrangian and dual function

Lagrange dual problem
KKT conditions

Sensitivity analysis

Problem reformulations

Theorems of alternatives

Complementary slackness

- assume strong duality holds, x^{\star} is primal optimal, $\left(\lambda^{\star}, v^{\star}\right)$ is dual optimal

$$
\begin{aligned}
f_{0}\left(x^{\star}\right)=g\left(\lambda^{\star}, v^{\star}\right) & =\inf _{x}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}(x)+\sum_{i=1}^{p} v_{i}^{\star} h_{i}(x)\right) \\
& \leq f_{0}\left(x^{\star}\right)+\sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}\left(x^{\star}\right)+\sum_{i=1}^{p} v_{i}^{\star} h_{i}\left(x^{\star}\right) \\
& \leq f_{0}\left(x^{\star}\right)
\end{aligned}
$$

- hence, the two inequalities hold with equality
- x^{\star} minimizes $L\left(x, \lambda^{\star}, v^{\star}\right)$
- $\lambda_{i}^{\star} f_{i}\left(x^{\star}\right)=0$ for $i=1, \ldots, m$ (known as complementary slackness):

$$
\lambda_{i}^{\star}>0 \Longrightarrow f_{i}\left(x^{\star}\right)=0, \quad f_{i}\left(x^{\star}\right)<0 \Longrightarrow \lambda_{i}^{\star}=0
$$

Karush-Kuhn-Tucker (KKT) conditions

the KKT conditions (for a problem with differentiable f_{i}, h_{i}) are

1. primal constraints: $f_{i}(x) \leq 0, i=1, \ldots, m, h_{i}(x)=0, i=1, \ldots, p$
2. dual constraints: $\lambda \geq 0$
3. complementary slackness: $\lambda_{i} f_{i}(x)=0, i=1, \ldots, m$
4. gradient of Lagrangian with respect to x vanishes:

$$
\nabla f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x)+\sum_{i=1}^{p} v_{i} \nabla h_{i}(x)=0
$$

if strong duality holds and x, λ, v are optimal, they satisfy the KKT conditions

KKT conditions for convex problem

if $\tilde{x}, \tilde{\lambda}, \tilde{v}$ satisfy KKT for a convex problem, then they are optimal:

- from complementary slackness: $f_{0}(\tilde{x})=L(\tilde{x}, \tilde{\lambda}, \tilde{v})$
- from 4th condition (and convexity): $g(\tilde{\lambda}, \tilde{v})=L(\tilde{x}, \tilde{\lambda}, \tilde{v})$
hence, $f_{0}(\tilde{x})=g(\tilde{\lambda}, \tilde{v})$
if Slater's condition is satisfied, then
x is optimal if and only if there exist λ, v that satisfy KKT conditions
- recall that Slater implies strong duality, and dual optimum is attained
- generalizes optimality condition $\nabla f_{0}(x)=0$ for unconstrained problem

Outline

```
Lagrangian and dual function
Lagrange dual problem
KKT conditions
```


Sensitivity analysis

Problem reformulations

Theorems of alternatives

Perturbation and sensitivity analysis

(unperturbed) optimization problem and its dual

$$
\begin{array}{llll}
\operatorname{minimize} & f_{0}(x) & \text { maximize } & g(\lambda, v) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m & \text { subject to } & \lambda \geq 0 \\
& h_{i}(x)=0, \quad i=1, \ldots, p & &
\end{array}
$$

perturbed problem and its dual

minimoize	$f_{0}(x)$	maximize $g(\lambda, v)-u^{T} \lambda-v^{T} v$
subject to	$f_{i}(x) \leq u_{i}, \quad i=1, \ldots, m \quad$	subject to $\lambda \geq 0$
	$h_{i}(x)=v_{i}, \quad i=1, \ldots, p$	

- x is primal variable; u, v are parameters
- $p^{\star}(u, v)$ is optimal value as a function of u, v
- $p^{\star}(0,0)$ is optimal value of unperturbed problem

Global sensitivity via duality

- assume strong duality holds for unperturbed problem, with $\lambda^{\star}, v^{\star}$ dual optimal
- apply weak duality to perturbed problem:

$$
p^{\star}(u, v) \geq g\left(\lambda^{\star}, v^{\star}\right)-u^{T} \lambda^{\star}-v^{T} v^{\star}=p^{\star}(0,0)-u^{T} \lambda^{\star}-v^{T} v^{\star}
$$

- implications

- if λ_{i}^{\star} large: p^{\star} increases greatly if we tighten constraint $i\left(u_{i}<0\right)$
- if λ_{i}^{\star} small: p^{\star} does not decrease much if we loosen constraint $i\left(u_{i}>0\right)$
- if v_{i}^{\star} large and positive: p^{\star} increases greatly if we take $v_{i}<0$
- if v_{i}^{\star} large and negative: p^{\star} increases greatly if we take $v_{i}>0$
- if v_{i}^{\star} small and positive: p^{\star} does not decrease much if we take $v_{i}>0$
- if v_{i}^{\star} small and negative: p^{\star} does not decrease much if we take $v_{i}<0$

Local sensitivity via duality

if (in addition) $p^{\star}(u, v)$ is differentiable at $(0,0)$, then

$$
\lambda_{i}^{\star}=-\frac{\partial p^{\star}(0,0)}{\partial u_{i}}, \quad v_{i}^{\star}=-\frac{\partial p^{\star}(0,0)}{\partial v_{i}}
$$

proof (for λ_{i}^{\star}): from global sensitivity result,

$$
\frac{\partial p^{\star}(0,0)}{\partial u_{i}}=\lim _{t \searrow 0} \frac{p^{\star}\left(t e_{i}, 0\right)-p^{\star}(0,0)}{t} \geq-\lambda_{i}^{\star} \quad \frac{\partial p^{\star}(0,0)}{\partial u_{i}}=\lim _{t / 0} \frac{p^{\star}\left(t e_{i}, 0\right)-p^{\star}(0,0)}{t} \leq-\lambda_{i}^{\star}
$$

hence, equality
$p^{\star}(u)$ for a problem with one (inequality) constraint:

Outline

```
Lagrangian and dual function
Lagrange dual problem
KKT conditions
Sensitivity analysis
```

Problem reformulations

Theorems of alternatives

Duality and problem reformulations

- equivalent formulations of a problem can lead to very different duals
- reformulating primal problem can be useful when dual is difficult to derive, or uninteresting

common reformulations

- introduce new variables and equality constraints
- make explicit constraints implicit or vice-versa
- transform objective or constraint functions, e.g., replace $f_{0}(x)$ by $\phi\left(f_{0}(x)\right)$ with ϕ convex, increasing

Introducing new variables and equality constraints

- unconstrained problem: minimize $f_{0}(A x+b)$
- dual function is constant: $g=\inf _{x} L(x)=\inf _{x} f_{0}(A x+b)=p^{\star}$
- we have strong duality, but dual is quite useless
- introduce new variable y and equality constraints $y=A x+b$

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(y) \\
\text { subject to } & A x+b-y=0
\end{array}
$$

- dual of reformulated problem is

$$
\begin{array}{ll}
\operatorname{maximize} & b^{T} v-f_{0}^{*}(v) \\
\text { subject to } & A^{T} v=0
\end{array}
$$

- a nontrivial, useful dual (assuming the conjugate f_{0}^{*} is easy to express)

Example: Norm approximation

- minimize $\|A x-b\|$
- reformulate as minimize $\|y\|$ subject to $y=A x-b$
- recall conjugate of general norm:

$$
\|z\|^{*}= \begin{cases}0 & \|z\|_{*} \leq 1 \\ \infty & \text { otherwise }\end{cases}
$$

- dual of (reformulated) norm approximation problem:

$$
\begin{array}{ll}
\operatorname{maximize} & b^{T} v \\
\text { subject to } & A^{T} v=0, \quad\|v\|_{*} \leq 1
\end{array}
$$

Outline

```
Lagrangian and dual function
Lagrange dual problem
KKT conditions
Sensitivity analysis
Problem reformulations
```

Theorems of alternatives

Theorems of alternatives

- consider two systems of inequality and equality constraints
- called weak alternatives if no more than one system is feasible
- called strong alternatives if exactly one of them is feasible
- examples: for any $a \in \mathbf{R}$, with variable $x \in \mathbf{R}$,
$-x>a$ and $x \leq a-1$ are weak alternatives
$-x>a$ and $x \leq a$ are strong alternatives
- a theorem of alternatives states that two inequality systems are (weak or strong) alternatives
- can be considered the extension of duality to feasibility problems

Feasibility problems

- consider system of (not necessarily convex) inequalities and equalities

$$
f_{i}(x) \leq 0, \quad i=1, \ldots, m, \quad h_{i}(x)=0, \quad i=1, \ldots, p
$$

- express as feasibility problem

$$
\begin{array}{ll}
\operatorname{minimize} & 0 \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m, \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

- if system if feasible, $p^{\star}=0$; if not, $p^{\star}=\infty$

Duality for feasibility problems

- dual function of feasibility problem is $g(\lambda, v)=\inf _{x}\left(\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} v_{i} h_{i}(x)\right)$
- for $\lambda \geq 0$, we have $g(\lambda, v) \leq p^{\star}$
- it follows that feasibility of the inequality system

$$
\lambda \geq 0, \quad g(\lambda, v)>0
$$

implies the original system is infeasible

- so this is a weak alternative to original system
- it is strong if f_{i} convex, h_{i} affine, and a constraint qualification holds
- g is positive homogeneous so we can write alternative system as

$$
\lambda \geq 0, \quad g(\lambda, v) \geq 1
$$

Example: Nonnegative solution of linear equations

- consider system

$$
A x=b, \quad x \geq 0
$$

- dual function is $g(\lambda, v)= \begin{cases}-v^{T} b & A^{T} v=\lambda \\ -\infty & \text { otherwise }\end{cases}$
- can express strong alternative of $A x=b, x \geq 0$ as

$$
A^{T} v \geq 0, \quad v^{T} b \leq-1
$$

(we can replace $v^{T} b \leq-1$ with $v^{T} b=-1$)

Farkas' lemma

- Farkas' lemma:

$$
A x \leq 0, \quad c^{T} x<0 \quad \text { and } \quad A^{T} y+c=0, \quad y \geq 0
$$

are strong alternatives

- proof: use (strong) duality for (feasible) LP

```
minimize c}\mp@subsup{c}{}{T}
subject to Ax\leq0
```


Investment arbitrage

- we invest x_{j} in each of n assets $1, \ldots, n$ with prices p_{1}, \ldots, p_{n}
- our initial cost is $p^{T} x$
- at the end of the investment period there are only m possible outcomes $i=1, \ldots, m$
- $V_{i j}$ is the payoff or final value of asset j in outcome i
- first investment is risk-free (cash): $p_{1}=1$ and $V_{i 1}=1$ for all i
- arbitrage means there is x with $p^{T} x<0, V x \geq 0$
- arbitrage means we receive money up front, and our investment cannot lose
- standard assumption in economics: the prices are such that there is no arbitrage

Absence of arbitrage

- by Farkas' lemma, there is no arbitrage \Longleftrightarrow there exists $y \in \mathbf{R}_{+}^{m}$ with $V^{T} y=p$
- since first column of V is $\mathbf{1}$, we have $\mathbf{1}^{T} y=1$
- y is interpreted as a risk-neutral probability on the outcomes $1, \ldots, m$
- $V^{T} y$ are the expected values of the payoffs under the risk-neutral probability
- interpretation of $V^{T} y=p$:
asset prices equal their expected payoff under the risk-neutral probability
- arbitrage theorem: there is no arbitrage \Leftrightarrow there exists a risk-neutral probability distribution under which each asset price is its expected payoff

Example

$$
V=\left[\begin{array}{lll}
1.0 & 0.5 & 0.0 \\
1.0 & 0.8 & 0.0 \\
1.0 & 1.0 & 1.0 \\
1.0 & 1.3 & 4.0
\end{array}\right], \quad p=\left[\begin{array}{l}
1.0 \\
0.9 \\
0.3
\end{array}\right], \quad \tilde{p}=\left[\begin{array}{l}
1.0 \\
0.8 \\
0.7
\end{array}\right]
$$

- with prices p, there is an arbitrage

$$
x=\left[\begin{array}{r}
6.2 \\
-7.7 \\
1.5
\end{array}\right], \quad p^{T} x=-0.2, \quad \mathbf{1}^{T} x=0, \quad V x=\left[\begin{array}{l}
2.35 \\
0.04 \\
0.00 \\
2.19
\end{array}\right]
$$

- with prices \tilde{p}, there is no arbitrage, with risk-neutral probability

$$
y=\left[\begin{array}{l}
0.36 \\
0.27 \\
0.26 \\
0.11
\end{array}\right] \quad V^{T} y=\left[\begin{array}{l}
1.0 \\
0.8 \\
0.7
\end{array}\right]
$$

