Disciplined Convex Programming and CVX

Stephen Boyd
Electrical Engineering Department
Stanford University

Convex Optimization, Boyd \& Vandenberghe

Outline

- cone program solvers
- modeling systems
- disciplined convex programming
- CVX (CVXPY, Convex.jl)

Cone program solvers

- LP solvers
- many, open source and commercial
- cone solvers
- each handles combinations of a subset of LP, SOCP, SDP, EXP cones
- open source: SDPT3, SeDuMi, CVXOPT, CSDP, ECOS, SCS, . . .
- commercial: Mosek, Gurobi, Cplex, . . .
- you'll write a basic cone solver later in the course

Transforming problems to cone form

- lots of tricks for transforming a problem into an equivalent cone program
- introducing slack variables
- introducing new variables that upper bound expressions
- these tricks greatly extend the applicability of cone solvers
- writing code to carry out this transformation is painful
- modeling systems automate this step

Modeling systems

a typical modeling system

- automates transformation to cone form; supports
- declaring optimization variables
- describing the objective function
- describing the constraints
- choosing (and configuring) the solver
- when given a problem instance, calls the solver
- interprets and returns the solver's status (optimal, infeasible, . . .)
- (when solved) transforms the solution back to original form

Some current modeling systems

- AMPL \& GAMS (proprietary)
- developed in the 1980s, still widely used in traditional OR
- no support for convex optimization
- YALMIP ('Yet Another LMI Parser', matlab)
- first object-oriented convex optimization modeling system
- CVX (matlab)
- CVXPY (python, GPL)
- Convex.jl (Julia, GPL, merging into JUMP)
- CVX, CVXPY, and Convex.jl collectively referred to as CVX*

Disciplined convex programming

- describe objective and constraints using expressions formed from
- a set of basic atoms (affine, convex, concave functions)
- a restricted set of operations or rules (that preserve convexity)
- modeling system keeps track of affine, convex, concave expressions
- rules ensure that
- expressions recognized as convex are convex
- but, some convex expressions are not recognized as convex
- problems described using DCP are convex by construction
- all convex optimization modeling systems use DCP

CVX

- uses DCP
- runs in Matlab, between the cvx_begin and cvx_end commands
- relies on SDPT3 or SeDuMi (LP/SOCP/SDP) solvers
- refer to user guide, online help for more info
- the CVX example library has more than a hundred examples

Example: Constrained norm minimization

```
A = randn(5, 3);
b = randn(5, 1);
cvx_begin
    variable x(3);
    minimize(norm(A*x - b, 1))
    subject to
    -0.5 <= x;
    x <= 0.3;
cvx_end
```

- between cvx_begin and cvx_end, x is a CVX variable
- statement subject to does nothing, but can be added for readability
- inequalities are intepreted elementwise

What CVX does

after cvx_end, CVX

- transforms problem into an LP
- calls solver SDPT3
- overwrites (object) x with (numeric) optimal value
- assigns problem optimal value to cvx_optval
- assigns problem status (which here is Solved) to cvx_status (had problem been infeasible, cvx_status would be Infeasible and x would be NaN)

Variables and affine expressions

- declare variables with variable name[(dims)] [attributes]
- variable x(3);
- variable C(4,3);
- variable S(3,3) symmetric;
- variable D(3,3) diagonal;
- variables y z;
- form affine expressions
$-\mathrm{A}=\operatorname{randn}(4,3)$;
- variables x(3) y(4);
$-3 * x+4$
- A*x - y
- $x(2: 3)$
- sum(x)

Some functions

function	meaning	attributes		
norm (x, p)	$\\|x\\|_{p}$	cvx		
square (x)	x^{2}	CVX		
square_pos (x)	$\left(x_{+}\right)^{2}$	cvx, nondecr		
pos (x)	x_{+}	cvx, nondecr		
sum_largest (x, k)	$x_{[1]}+\cdots+x_{[k]}$	cvx, nondecr		
sqrt(x)	$\sqrt{x} \quad(x \geq 0)$	ccv, nondecr		
inv_pos(x)	$1 / x \quad(x>0)$	cvx, nonincr		
$\max (\mathrm{x})$	$\max \left\{x_{1}, \ldots, x_{n}\right\}$	cvx, nondecr		
quad_over_lin(x, y)	$x^{2} / y \quad(y>0)$	cvx, nonincr in y		
lambda_max (X)	$\lambda_{\max }(X) \quad\left(X=X^{T}\right)$	cvx		
huber (x)	$\begin{cases}x^{2}, & \|x\| \leq 1 \\ 2\|x\|-1, & \|x\|>1\end{cases}$	CVX		

Composition rules

- can combine atoms using valid composition rules, e.g.:
- a convex function of an affine function is convex
- the negative of a convex function is concave
- a convex, nondecreasing function of a convex function is convex
- a concave, nondecreasing function of a concave function is concave

Composition rules - multiple arguments

- for convex $h, h\left(g_{1}, \ldots, g_{k}\right)$ is recognized as convex if, for each i,
- g_{i} is affine, or
- g_{i} is convex and h is nondecreasing in its i th arg, or
- g_{i} is concave and h is nonincreasing in its i th arg
- for concave $h, h\left(g_{1}, \ldots, g_{k}\right)$ is recognized as concave if, for each i,
- g_{i} is affine, or
- g_{i} is convex and h is nonincreasing in i th arg, or
- g_{i} is concave and h is nondecreasing in i th arg

Valid (recognized) examples

$\mathrm{u}, \mathrm{v}, \mathrm{x}, \mathrm{y}$ are scalar variables; X is a symmetric 3×3 variable

- convex:
$-\operatorname{norm}(A * x-y)+0.1 * \operatorname{norm}(x, 1)$
- quad_over_lin(u - v, 1 - square(v))
- lambda_max ($2 *$ X - $4 *$ eye (3))
- norm($2 * \mathrm{X}$ - 3, 'fro')
- concave:
$-\min (1+2 * u, 1-\max (2, \mathrm{v}))$
- sqrt(v) - 4.55*inv_pos(u - v)

Rejected examples

$\mathrm{u}, \mathrm{v}, \mathrm{x}, \mathrm{y}$ are scalar variables

- neither convex nor concave:
- square(x) - square(y)
$-\operatorname{norm}(A * x-y)-0.1 * \operatorname{norm}(x, 1)$
- rejected due to limited DCP ruleset:
- sqrt(sum(square(x))) (is convex; could use norm(x))
- square (1 + $x^{\wedge} 2$) (is convex; could use square_pos $\left(1+x^{\wedge} 2\right)$, or 1 + 2*pow_pos(x, 2) + pow_pos(x, 4))

Sets

- some constraints are more naturally expressed with convex sets
- sets in CVX work by creating unnamed variables constrained to the set
- examples:
- semidefinite(n)
- nonnegative(n)
- simplex (n)
- lorentz(n)
- semidefinite(n), say, returns an unnamed (symmetric matrix) variable that is constrained to be positive semidefinite

Using the semidefinite cone

variables: X (symmetric matrix), z (vector), t (scalar) constants: A and B (matrices)

- $X==$ semidefinite(n)
- means $X \in \mathbf{S}_{+}^{n}($ or $X \succeq 0)$
- $A * X * A^{\prime}-X==B *$ semidefinite (n) $* B^{\prime}$
- means $\exists Z \succeq 0$ so that $A X A^{T}-X=B Z B^{T}$
- [X z; z' t] == semidefinite(n+1)
- means $\left[\begin{array}{cc}X & z \\ z^{T} & t\end{array}\right] \succeq 0$

Objectives and constraints

- objective can be
- minimize(convex expression)
- maximize(concave expression)
- omitted (feasibility problem)
- constraints can be
- convex expression <= concave expression
- concave expression >= convex expression
- affine expression == affine expression
- omitted (unconstrained problem)

More involved example

```
A = randn(5);
A = A'*A;
cvx_begin
    variable X(5, 5) symmetric;
    variable y;
    minimize(norm(X) - 10*sqrt(y))
    subject to
        X - A == semidefinite(5);
        X (2,5) == 2*y;
        X(3,1) >= 0.8;
        y <= 4;
cvx_end
```


Defining new functions

- can make a new function using existing atoms
- example: the convex deadzone function

$$
f(x)=\max \{|x|-1,0\}= \begin{cases}0, & |x| \leq 1 \\ x-1, & x>1 \\ 1-x, & x<-1\end{cases}
$$

- create a file deadzone.m with the code

```
function y = deadzone(x)
y = max(abs(x) - 1, 0)
```

- deadzone makes sense both within and outside of CVX

Defining functions via incompletely specified problems

- suppose f_{0}, \ldots, f_{m} are convex in (x, z)
- let $\phi(x)$ be optimal value of convex problem, with variable z and parameter x

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x, z) \\
\text { subject to } & f_{i}(x, z) \leq 0, \quad i=1, \ldots, m \\
& A_{1} x+A_{2} z=b
\end{array}
$$

- ϕ is a convex function
- problem above sometimes called incompletely specified since x isn't (yet) given
- an incompletely specified concave maximization problem defines a concave function

CVX functions via incompletely specified problems

implement in cvx with
function cvx_optval = phi(x)
cvx_begin
variable z;
minimize (f0(x, z))
subject to

$$
\mathrm{f} 1(\mathrm{x}, \mathrm{z})<=0 ; \ldots
$$

$$
\mathrm{A} 1 * \mathrm{x}+\mathrm{A} 2 * \mathrm{z}==\mathrm{b} ;
$$

cvx_end

- function phi will work for numeric x (by solving the problem)
- function phi can also be used inside a CVX specification, wherever a convex function can be used

Simple example: Two element max

- create file max2.m containing

```
function cvx_optval = max2(x, y)
cvx_begin
    variable t;
    minimize(t)
    subject to
        x <= t;
        y <= t;
cvx_end
```

- the constraints define the epigraph of the max function
- could add logic to return $\max (\mathrm{x}, \mathrm{y})$ when x, y are numeric (otherwise, an LP is solved to evaluate the max of two numbers!)

A more complex example

- $f(x)=x+x^{1.5}+x^{2.5}$, with $\operatorname{dom} f=\mathbf{R}_{+}$, is a convex, monotone increasing function
- its inverse $g=f^{-1}$ is concave, monotone increasing, with $\operatorname{dom} g=\mathbf{R}_{+}$
- there is no closed form expression for g
- $g(y)$ is optimal value of problem

```
maximize t
subject to }\mp@subsup{t}{+}{}+\mp@subsup{t}{+}{1.5}+\mp@subsup{t}{+}{2.5}\leq
```

(for $y<0$, this problem is infeasible, so optimal value is $-\infty$)

- implement as

```
function cvx_optval = g(y)
cvx_begin
    variable t;
        maximize(t)
        subject to
            pos(t) + pow_pos(t, 1.5) + pow_pos(t, 2.5) <= y;
cvx_end
```

- use it as an ordinary function, as in $g(14.3)$, or within CVX as a concave function:

```
cvx_begin
```

 variables x y;
 minimize (quad_over_lin(x, y) + 4*x + 5*y)
 subject to
 \(g(x)+2 * g(y)>=2 ;\)
 cvx_end

Example

- optimal value of LP

$$
f(c)=\inf \left\{c^{T} x \mid A x \preceq b\right\}
$$

is concave function of c

- by duality (assuming feasibility of $A x \preceq b$) we have

$$
f(c)=\sup \left\{-\lambda^{T} b \mid A^{T} \lambda+c=0, \lambda \succeq 0\right\}
$$

- define f in CVX as

```
function cvx_optval = lp_opt_val(A,b,c)
cvx_begin
    variable lambda(length(b));
    maximize(-lambda'*b);
    subject to
    A'*lambda + c == 0; lambda >= 0;
cvx_end
```

- in lp_opt_val (A, b, c) A, b must be constant; c can be affine

CVX hints/warnings

- watch out for $=($ assignment $)$ versus $==$ (equality constraint)
- $\mathrm{X}>=0$, with matrix X , is an elementwise inequality
- X >= semidefinite(n) means: X is elementwise larger than some positive semidefinite matrix (which is likely not what you want)
- writing subject to is unnecessary (but can look nicer)
- many problems traditionally stated using convex quadratic forms can posed as norm problems (which can have better numerical properties): $\mathrm{x}^{\prime} * \mathrm{P} * \mathrm{x}$ <= 1 can be replaced with norm($\left.\operatorname{chol}(\mathrm{P}) * \mathrm{x}\right)$ <= 1

