
Chance constrained optimization

• chance constraints and percentile optimization

• chance constraints for log-concave distributions

• convex approximation of chance constraints

sources: Rockafellar & Uryasev, Nemirovsky & Shapiro
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Chance constraints and percentile optimization

• ‘chance constraints’ (η is ‘confidence level’):

Prob(fi(x, ω) ≤ 0) ≥ η

– convex in some cases (later)
– generally interested in η = 0.9, 0.95, 0.99
– η = 0.999 meaningless (unless you’re sure about the distribution tails)

• percentile optimization (γ is ‘η-percentile’):

minimize γ
subject to Prob(f0(x, ω) ≤ γ) ≥ η

– convex or quasi-convex in some cases (later)
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Value-at-risk and conditional value-at-risk

• value-at-risk of random variable z, at level η:

VaR(z; η) = inf{γ | Prob(z ≤ γ) ≥ η}

– chance constraint Prob(fi(x, ω) ≤ 0) ≥ η same as
VaR(fi(x, ω); η) ≤ 0

• conditional value-at-risk:

CVaR(z; η) = inf
β

(β + 1/(1− η)E(z − β)+)

– CVaR(z; η) ≥ VaR(z; η) (more on this later)
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CVaR interpretation

(for continuous distributions)

• in CVaR definition, β⋆ = VaR(z; η):

0 =
d

dβ
(β + 1/(1− η)E(z − β)+) = 1− 1/(1− η)Prob(z ≥ β)

so Prob(z ≥ β⋆) = 1− η

• conditional tail expectation (or expected shortfall)

E(z|z ≥ β⋆) = E(β⋆ + (z − β⋆)|z ≥ β⋆)

= β⋆ +E((z − β⋆)+)/Prob(z ≥ β⋆)

= CVaR(z; η)
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Chance constraints for log-concave distributions

• suppose

– ω has log-concave density p(ω)
– C = {(x, ω) | f(x, ω) ≤ 0} is convex in (x, ω)

• then

Prob(f(x, ω) ≤ 0) =

∫

1((x, ω) ∈ C)p(ω) dω

is log-concave, since integrand is

• so chance constraint Prob(f(x, ω) ≤ 0) ≥ η can be expressed as
convex constraint

logProb(f(x, ω) ≤ 0) ≥ log η
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Linear inequality with normally distributed parameter

• consider aTx ≤ b, with a ∼ N (ā,Σ)

• then aTx− b ∼ N (āTx− b, xTΣx)

• hence

Prob(aTx ≤ b) = Φ

(

b− āTx√
xTΣx

)

• and so

Prob(aTx ≤ b) ≥ η ⇐⇒ b− āTx ≥ Φ−1(η)‖Σ1/2x‖2

a second-order cone constraint for η ≥ 0.5 (i.e., Φ−1(η) ≥ 0)
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Portfolio optimization example

• x ∈ Rn gives portfolio allocation; xi is (fractional) position in asset i

• x must satisfy 1
Tx = 1, x ∈ C (convex portfolio constraint set)

• portfolio return (say, in percent) is pTx, where p ∼ N (p̄,Σ)
(a more realistic model is p log-normal)

• maximize expected return subject to limit on probability of loss
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• problem is
maximize E pTx
subject to Prob(pTx ≤ 0) ≤ β

1
Tx = 1, x ∈ C

• can be expressed as convex problem (provided β ≤ 1/2)

maximize p̄Tx
subject to p̄Tx ≥ Φ−1(1− β)‖Σ1/2x‖2

1
Tx = 1, x ∈ C

(an SOCP when C is polyhedron)
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Example

• n = 10 assets, β = 0.05, C = {x | x � −0.1}

• compare

– optimal portfolio
– optimal portfolio w/o loss risk constraint
– uniform portfolio (1/n)1

portfolio E pTx Prob(pTx ≤ 0)
optimal 7.51 5.0%
w/o loss constraint 10.66 20.3%
uniform 3.41 18.9%
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return distributions:
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Convex approximation of chance constraint bound

• assume fi(x, ω) is convex in x

• suppose φ : R → R is nonnegative convex nondecreasing, with φ(0) = 1

• for any αi > 0, φ(z/αi) ≥ 1(z > 0) for all z, so

Eφ(fi(x, ω)/αi) ≥ Prob(fi(x, ω) > 0)

• hence (convex) constraint

Eφ(fi(x, ω)/αi) ≤ 1− η

ensures chance constraint Prob(fi(x, ω) ≤ 0) ≥ η holds

• this holds for any αi > 0; we now show how to optimize over αi
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• write constraint as

Eαiφ(fi(x, ω)/αi) ≤ αi(1− η)

– (perspective function) vφ(u/v) is convex in (u, v) for v > 0,
nondecreasing in u

– so composition αiφ(fi(x, ω)/αi) is convex in (x, αi) for αi > 0
– hence constraint above is convex in x and αi

– so we can optimize over x and αi > 0 via convex optimization

• yields a convex stochastic optimization problem that is a conservative
approximation of the chance-constrained problem

• we’ll look at some special cases
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Markov chance constraint bound

• taking φ(u) = (u+ 1)+ gives Markov bound: for any αi > 0,

Prob(fi(x, ω) > 0) ≤ E(fi(x, ω)/αi + 1)+

• convex approximation constraint

Eαi(fi(x, ω)/αi + 1)+ ≤ αi(1− η)

can be written as

E(fi(x, ω) + αi)+ ≤ αi(1− η)

• we can optimize over x and αi ≥ 0
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Interpretation via conditional value-at-risk

• write conservative approximation as

E(fi(x, ω) + αi)+
1− η

− αi ≤ 0

• LHS is convex in (x, αi), so minimum over αi,

inf
αi>0

(

E(fi(x, ω) + αi)+
1− η

− αi

)

is convex in x

• this is CVaR(fi(x, ω); η) (can show αi > 0 can be dropped)

• so convex approximation replaces VaR(fi(x, ω); η) ≤ 0 with
CVaR(fi(x, ω); η) ≤ 0 which is convex in x
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Chebyshev chance constraint bound

• taking φ(u) = (u+ 1)2+ yields Chebyshev bound: for any αi > 0,

Prob(fi(x, ω) > 0) ≤ E(fi(x, ω)/αi + 1)2+

• convex approximation constraint

Eαi(fi(x, ω)/αi + 1)2+ ≤ αi(1− η)

can be written as

E(fi(x, ω) + αi)
2
+/αi ≤ αi(1− η)
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Traditional Chebyshev bound

• dropping subscript + we get more conservative constraint

Eαi(fi(x, ω)/αi + 1)2 ≤ αi(1− η)

which we can write as

2E fi(x, ω) + (1/αi)E fi(x, ω)
2 + αiη ≤ 0

• minimizing over αi gives αi =
(

E fi(x, ω)
2/η

)1/2
; yields constraint

E fi(x, ω) +
(

ηE fi(x, ω)
2
)1/2 ≤ 0

which depends only on first and second moments of fi
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Example

• fi(x) = aTx− b, where a is random with E a = ā, E aaT = Σ

• traditional Chebyshev approximation of chance constraint is

āTx− b+ η1/2
(

xTΣx− 2bāTx+ b2
)1/2 ≤ 0

• can write as second-order cone constraint

āTx− b+ η1/2‖(z, y)‖2 ≤ 0

with z = Σ1/2x− bΣ−1/2ā, y = b
(

1− āTΣ−1ā
)1/2

• can interpret as certainty-equivalent constraint, with norm term as
‘extra margin’
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Chernoff chance constraint bound

• taking φ(u) = expu yields Chernoff bound: for any αi > 0,

Prob(fi(x, ω) > 0) ≤ E exp(fi(x, ω)/αi)

• convex approximation constraint

Eαi exp(fi(x, ω)/αi) ≤ αi(1− η)

can be written as

logE exp(fi(x, ω)/αi) ≤ log(1− η)

(LHS is cumulant generating function of fi(x, ω), evaluated at 1/αi)
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Example

• maximize a linear revenue function (say) subject to random linear
constraints holding with probability η:

maximize cTx
subject to Prob(max(Ax− b) ≤ 0) ≥ η

with variable x ∈ Rn; A ∈ Rm×n, b ∈ Rm random (Gaussian)

• Markov/CVaR approximation:

maximize cTx
subject to E(max(Ax− b) + α)+ ≤ α(1− η)

with variables x ∈ Rn, α ∈ R
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• Chebyshev approximation:

maximize cTx
subject to E(max(Ax− b) + α)2+/α ≤ α(1− η)

with variables x ∈ Rn, α ∈ R

• optimal values of these approximate problems are lower bounds for
original problem
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• instance with n = 5, m = 10, η = 0.9

• solve approximations with sampling method with N = 1000 training
samples, validate with M = 10000 samples

• compare to solution of deterministic problem

maximize cTx
subject to EAx ≤ E b

• estimates of Prob(max(Ax− b) ≤ 0) on training/validation data

cTx train validate
Markov 3.60 0.97 0.96
Chebyshev 3.43 0.97 0.96
deterministic 7.98 0.04 0.03
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• PDF of max(Ax− b) for Markov approximation solution
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