# **Convex Optimization**

Stephen Boyd Lieven Vandenberghe

Revised slides by Stephen Boyd, Lieven Vandenberghe, and Parth Nobel

6. Approximation and fitting

### Outline

Norm and penalty approximation

Regularized approximation

**Robust approximation** 

## Norm approximation

- ▶ minimize ||Ax b||, with  $A \in \mathbf{R}^{m \times n}$ ,  $m \ge n$ ,  $|| \cdot ||$  is any norm
- **approximation**:  $Ax^*$  is the best approximation of b by a linear combination of columns of A
- **geometric**:  $Ax^*$  is point in  $\mathcal{R}(A)$  closest to b (in norm  $\|\cdot\|$ )
- **estimation**: linear measurement model y = Ax + v
  - measurement y, v is measurement error, x is to be estimated
  - implausibility of v is ||v||
  - given y = b, most plausible x is  $x^*$
- **optimal design**: *x* are design variables (input), *Ax* is result (output)
  - $-x^{\star}$  is design that best approximates desired result b (in norm  $\|\cdot\|$ )

## **Examples**

- Euclidean approximation ( $\|\cdot\|_2$ )
  - solution  $x^{\star} = A^{\dagger}b$
- Chebyshev or minimax approximation  $(\| \cdot \|_{\infty})$ 
  - can be solved via LP

 $\begin{array}{ll} \text{minimize} & t\\ \text{subject to} & -t\mathbf{1} \leq Ax - b \leq t\mathbf{1} \end{array}$ 

sum of absolute residuals approximation  $(\| \cdot \|_1)$ 

- can be solved via LP

 $\begin{array}{ll} \text{minimize} & \mathbf{1}^T y\\ \text{subject to} & -y \leq Ax - b \leq y \end{array}$ 

## Penalty function approximation

minimize  $\phi(r_1) + \dots + \phi(r_m)$ subject to r = Ax - b

 $(A \in \mathbf{R}^{m \times n}, \phi : \mathbf{R} \to \mathbf{R} \text{ is a convex penalty function})$ 

#### examples

- quadratic:  $\phi(u) = u^2$
- deadzone-linear with width a:

$$\phi(u) = \max\{0, |u| - a\}$$

► log-barrier with limit *a*:

$$\phi(u) = \begin{cases} -a^2 \log(1 - (u/a)^2) & |u| < a \\ \infty & \text{otherwise} \end{cases}$$



#### **Convex Optimization**

## Example: histograms of residuals

 $A \in \mathbf{R}^{100 \times 30}$ ; shape of penalty function affects distribution of residuals

absolute value  $\phi(u) = |u|$ 

square  $\phi(u) = u^2$ 

deadzone 
$$\phi(u) = \max\{0, |u| - 0.5\}$$

log-barrier 
$$\phi(u) = -\log(1-u^2)$$



**Convex Optimization** 

## Huber penalty function

$$\phi_{\text{hub}}(u) = \begin{cases} u^2 & |u| \le M\\ M(2|u| - M) & |u| > M \end{cases}$$



linear growth for large u makes approximation less sensitive to outliers

called a robust penalty

## Example



• 42 points (circles)  $t_i$ ,  $y_i$ , with two outliers

• affine function  $f(t) = \alpha + \beta t$  fit using quadratic (dashed) and Huber (solid) penalty

#### **Convex Optimization**

## Least-norm problems

least-norm problem:

minimize ||x||subject to Ax = b,

with  $A \in \mathbf{R}^{m \times n}$ ,  $m \le n$ ,  $\|\cdot\|$  is any norm

- **geometric:**  $x^*$  is smallest point in solution set  $\{x \mid Ax = b\}$
- estimation:
  - b = Ax are (perfect) measurements of x
  - ||x|| is implausibility of x
  - $-x^{\star}$  is most plausible estimate consistent with measurements
- **design:** *x* are design variables (inputs); *b* are required results (outputs)
  - $-x^{\star}$  is smallest ('most efficient') design that satisfies requirements

## **Examples**

- least Euclidean norm ( $\|\cdot\|_2$ )
  - solution  $x = A^{\dagger}b$  (assuming  $b \in \mathcal{R}(A)$ )
- least sum of absolute values  $(\| \cdot \|_1)$ 
  - can be solved via LP

 $\begin{array}{ll} \text{minimize} & \mathbf{1}^T y\\ \text{subject to} & -y \leq x \leq y, \quad Ax = b \end{array}$ 

- tends to yield sparse  $x^{\star}$ 



Norm and penalty approximation

Regularized approximation

**Robust approximation** 

## **Regularized approximation**

a bi-objective problem:

minimize (w.r.t. 
$$\mathbf{R}^2_+$$
) ( $||Ax - b||, ||x||$ )

- ►  $A \in \mathbf{R}^{m \times n}$ , norms on  $\mathbf{R}^m$  and  $\mathbf{R}^n$  can be different
- interpretation: find good approximation  $Ax \approx b$  with small x
- **estimation:** linear measurement model y = Ax + v, with prior knowledge that ||x|| is small
- optimal design: small x is cheaper or more efficient, or the linear model y = Ax is only valid for small x
- **robust approximation:** good approximation  $Ax \approx b$  with small x is less sensitive to errors in A than good approximation with large x

## **Scalarized problem**

• minimize  $||Ax - b|| + \gamma ||x||$ 

- solution for  $\gamma > 0$  traces out optimal trade-off curve
- other common method: minimize  $||Ax b||^2 + \delta ||x||^2$  with  $\delta > 0$
- with  $\|\cdot\|_2$ , called Tikhonov regularization or ridge regression

minimize  $||Ax - b||_2^2 + \delta ||x||_2^2$ 

can be solved as a least-squares problem

minimize 
$$\left\| \begin{bmatrix} A \\ \sqrt{\delta I} \end{bmatrix} x - \begin{bmatrix} b \\ 0 \end{bmatrix} \right\|_{2}^{2}$$

with solution 
$$x^{\star} = (A^T A + \delta I)^{-1} A^T b$$

## **Optimal input design**

linear dynamical system (or convolution system) with impulse response h:

$$y(t) = \sum_{\tau=0}^{t} h(\tau)u(t-\tau), \quad t = 0, 1, \dots, N$$

input design problem: multicriterion problem with 3 objectives

- tracking error with desired output  $y_{des}$ :  $J_{track} = \sum_{t=0}^{N} (y(t) y_{des}(t))^2$
- input magnitude:  $J_{\text{mag}} = \sum_{t=0}^{N} u(t)^2$
- input variation:  $J_{der} = \sum_{t=0}^{N-1} (u(t+1) u(t))^2$

track desired output using a small and slowly varying input signal

**regularized least-squares formulation**: minimize  $J_{\text{track}} + \delta J_{\text{der}} + \eta J_{\text{mag}}$ 

- for fixed  $\delta$ ,  $\eta$ , a least-squares problem in  $u(0), \ldots, u(N)$ 

## Example





## **Signal reconstruction**

bi-objective problem:

minimize (w.r.t.  $\mathbf{R}^{2}_{+}$ )  $(\|\hat{x} - x_{cor}\|_{2}, \phi(\hat{x}))$ 

- $-x \in \mathbf{R}^n$  is unknown signal
- $-x_{cor} = x + v$  is (known) corrupted version of x, with additive noise v
- variable  $\hat{x}$  (reconstructed signal) is estimate of x
- $-\phi: \mathbf{R}^n \to \mathbf{R}$  is regularization function or smoothing objective

#### examples:

- quadratic smoothing,  $\phi_{\text{quad}}(\hat{x}) = \sum_{i=1}^{n-1} (\hat{x}_{i+1} \hat{x}_i)^2$
- total variation smoothing,  $\phi_{tv}(\hat{x}) = \sum_{i=1}^{n-1} |\hat{x}_{i+1} \hat{x}_i|$

## **Quadratic smoothing example**



original signal x and noisy signal  $x_{cor}$ 



three solutions on trade-off curve  $\|\hat{x} - x_{cor}\|_2$  versus  $\phi_{quad}(\hat{x})$ 

#### **Convex Optimization**

## Reconstructing a signal with sharp transitions



Convex Optimization

# **Total variation reconstruction**



total variation smoothing preserves sharp transitions in signal

**Convex Optimization** 

### **Outline**

Norm and penalty approximation

Regularized approximation

**Robust approximation** 

## **Robust approximation**

- minimize ||Ax b|| with uncertain A
- two approaches:
  - **stochastic**: assume *A* is random, minimize  $\mathbf{E} ||Ax b||$
  - worst-case: set  $\mathcal{R}$  of possible values of A, minimize  $\sup_{A \in \mathcal{R}} ||Ax b||$
- ► tractable only in special cases (certain norms || · ||, distributions, sets A)

## **Example**

 $A(u) = A_0 + uA_1, u \in [-1, 1]$ 

- ►  $x_{nom}$  minimizes  $||A_0x b||_2^2$
- ►  $x_{\text{stoch}}$  minimizes  $\mathbf{E} ||A(u)x b||_2^2$ with *u* uniform on [-1, 1]

• 
$$x_{wc}$$
 minimizes  $\sup_{-1 \le u \le 1} ||A(u)x - b||_2^2$ 

plot shows  $r(u) = ||A(u)x - b||_2$  versus u



### Stochastic robust least-squares

• 
$$A = \overline{A} + U$$
, U random,  $\mathbf{E} U = 0$ ,  $\mathbf{E} U^T U = P$ 

► stochastic least-squares problem: minimize  $\mathbf{E} \| (\bar{A} + U)x - b \|_2^2$ 

explicit expression for objective:

$$\begin{aligned} \mathbb{E} \|Ax - b\|_{2}^{2} &= \mathbb{E} \|\bar{A}x - b + Ux\|_{2}^{2} \\ &= \|\bar{A}x - b\|_{2}^{2} + \mathbb{E} x^{T} U^{T} Ux \\ &= \|\bar{A}x - b\|_{2}^{2} + x^{T} Px \end{aligned}$$

▶ hence, robust least-squares problem is equivalent to: minimize  $\|\bar{A}x - b\|_2^2 + \|P^{1/2}x\|_2^2$ 

► for  $P = \delta I$ , get Tikhonov regularized problem: minimize  $\|\bar{A}x - b\|_2^2 + \delta \|x\|_2^2$ 

### Worst-case robust least-squares

•  $\mathcal{A} = \{\overline{A} + u_1A_1 + \dots + u_pA_p \mid ||u||_2 \le 1\}$  (an ellipsoid in  $\mathbb{R}^{m \times n}$ )

worst-case robust least-squares problem is

minimize 
$$\sup_{A \in \mathcal{A}} ||Ax - b||_2^2 = \sup_{||u||_2 \le 1} ||P(x)u + q(x)||_2^2$$

where  $P(x) = \begin{bmatrix} A_1x & A_2x & \cdots & A_px \end{bmatrix}$ ,  $q(x) = \bar{A}x - b$ 

from book appendix B, strong duality holds between the following problems

$$\begin{array}{ll} \text{maximize} & \|Pu+q\|_2^2 & \text{minimize} & t+\lambda \\ \text{subject to} & \|u\|_2^2 \le 1 & \\ & \text{subject to} & \begin{bmatrix} I & P & q \\ P^T & \lambda I & 0 \\ q^T & 0 & t \end{bmatrix} \ge 0 \end{array}$$

hence, robust least-squares problem is equivalent to SDP

$$\begin{array}{ll} \text{minimize} & t + \lambda \\ \text{subject to} & \left[ \begin{array}{ccc} I & P(x) & q(x) \\ P(x)^T & \lambda I & 0 \\ q(x)^T & 0 & t \end{array} \right] \geq 0 \\ \end{array}$$

**Convex Optimization** 

## **Example**

►  $r(u) = ||(A_0 + u_1A_1 + u_2A_2)x - b||_2$ , *u* uniform on unit disk

### three choices of x:

- $x_{ls}$  minimizes  $||A_0x b||_2$
- $x_{tik}$  minimizes  $||A_0x b||_2^2 + \delta ||x||_2^2$  (Tikhonov solution)
- $x_{\text{rls}}$  minimizes  $\sup_{A \in \mathcal{A}} ||Ax b||_2^2 + ||x||_2^2$

