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6. Approximation and fitting



Outline

Norm and penalty approximation

Regularized approximation

Robust approximation
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Norm approximation

▶ minimize ∥Ax − b∥, with A ∈ Rm×n, m ≥ n, ∥ · ∥ is any norm

▶ approximation: Ax★ is the best approximation of b by a linear combination of columns of A
▶ geometric: Ax★ is point in R(A) closest to b (in norm ∥ · ∥)
▶ estimation: linear measurement model y = Ax + v

– measurement y, v is measurement error, x is to be estimated
– implausibility of v is ∥v∥
– given y = b, most plausible x is x★

▶ optimal design: x are design variables (input), Ax is result (output)
– x★ is design that best approximates desired result b (in norm ∥ · ∥)
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Examples

▶ Euclidean approximation (∥ · ∥2)
– solution x★ = A†b

▶ Chebyshev or minimax approximation (∥ · ∥∞)
– can be solved via LP

minimize t
subject to −t1 ⪯ Ax − b ⪯ t1

▶ sum of absolute residuals approximation (∥ · ∥1)
– can be solved via LP

minimize 1Ty
subject to −y ⪯ Ax − b ⪯ y
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Penalty function approximation

minimize 𝜙(r1) + · · · + 𝜙(rm)
subject to r = Ax − b

(A ∈ Rm×n, 𝜙 : R → R is a convex penalty function)
examples
▶ quadratic: 𝜙(u) = u2

▶ deadzone-linear with width a:

𝜙(u) = max{0, |u| − a}

▶ log-barrier with limit a:

𝜙(u) =
{
−a2 log(1 − (u/a)2) |u| < a
∞ otherwise u
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Example: histograms of residuals

A ∈ R100×30; shape of penalty function affects distribution of residuals

absolute value 𝜙(u) = |u|

square 𝜙(u) = u2

deadzone 𝜙(u) = max{0, |u|−0.5}

log-barrier 𝜙(u) = − log(1 − u2)
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Huber penalty function

𝜙hub (u) =
{

u2 |u| ≤ M
M(2|u| − M) |u| > M

u
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▶ linear growth for large u makes approximation less sensitive to outliers
▶ called a robust penalty
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Example
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▶ 42 points (circles) ti, yi, with two outliers
▶ affine function f (t) = 𝛼 + 𝛽t fit using quadratic (dashed) and Huber (solid) penalty
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Least-norm problems

▶ least-norm problem:
minimize ∥x∥
subject to Ax = b,

with A ∈ Rm×n, m ≤ n, ∥ · ∥ is any norm

▶ geometric: x★ is smallest point in solution set {x | Ax = b}
▶ estimation:

– b = Ax are (perfect) measurements of x
– ∥x∥ is implausibility of x
– x★ is most plausible estimate consistent with measurements

▶ design: x are design variables (inputs); b are required results (outputs)
– x★ is smallest (‘most efficient’) design that satisfies requirements
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Examples

▶ least Euclidean norm (∥ · ∥2)
– solution x = A†b (assuming b ∈ R(A))

▶ least sum of absolute values (∥ · ∥1)
– can be solved via LP

minimize 1Ty
subject to −y ⪯ x ⪯ y, Ax = b

– tends to yield sparse x★
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Outline

Norm and penalty approximation

Regularized approximation

Robust approximation
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Regularized approximation

▶ a bi-objective problem:

minimize (w.r.t. R2
+) (∥Ax − b∥, ∥x∥)

▶ A ∈ Rm×n, norms on Rm and Rn can be different
▶ interpretation: find good approximation Ax ≈ b with small x

▶ estimation: linear measurement model y = Ax + v, with prior knowledge that ∥x∥ is small
▶ optimal design: small x is cheaper or more efficient, or the linear model y = Ax is only valid

for small x
▶ robust approximation: good approximation Ax ≈ b with small x is less sensitive to errors

in A than good approximation with large x
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Scalarized problem

▶ minimize ∥Ax − b∥ + 𝛾∥x∥
▶ solution for 𝛾 > 0 traces out optimal trade-off curve
▶ other common method: minimize ∥Ax − b∥2 + 𝛿∥x∥2 with 𝛿 > 0

▶ with ∥ · ∥2, called Tikhonov regularization or ridge regression

minimize ∥Ax − b∥2
2 + 𝛿∥x∥2

2

▶ can be solved as a least-squares problem

minimize




[ A√

𝛿I

]
x −

[
b
0

]



2

2

with solution x★ = (ATA + 𝛿I)−1ATb
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Optimal input design

▶ linear dynamical system (or convolution system) with impulse response h:

y(t) =
t∑︁

𝜏=0
h(𝜏)u(t − 𝜏), t = 0, 1, . . . ,N

▶ input design problem: multicriterion problem with 3 objectives
– tracking error with desired output ydes: Jtrack =

∑N
t=0 (y(t) − ydes (t))2

– input magnitude: Jmag =
∑N

t=0 u(t)2

– input variation: Jder =
∑N−1

t=0 (u(t + 1) − u(t))2

track desired output using a small and slowly varying input signal
▶ regularized least-squares formulation: minimize Jtrack + 𝛿Jder + 𝜂Jmag

– for fixed 𝛿, 𝜂, a least-squares problem in u(0), . . . , u(N)
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Example
▶ minimize Jtrack + 𝛿Jder + 𝜂Jmag
▶ (top) 𝛿 = 0, small 𝜂; (middle) 𝛿 = 0, larger 𝜂; (bottom) large 𝛿
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Signal reconstruction

▶ bi-objective problem:

minimize (w.r.t. R2
+) (∥x̂ − xcor∥2, 𝜙(x̂))

– x ∈ Rn is unknown signal
– xcor = x + v is (known) corrupted version of x, with additive noise v
– variable x̂ (reconstructed signal) is estimate of x
– 𝜙 : Rn → R is regularization function or smoothing objective

▶ examples:
– quadratic smoothing, 𝜙quad (x̂) =

∑n−1
i=1 (x̂i+1 − x̂i)2

– total variation smoothing, 𝜙tv (x̂) =
∑n−1

i=1 |x̂i+1 − x̂i |
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Quadratic smoothing example
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original signal x and noisy signal xcor
three solutions on trade-off curve

∥x̂ − xcor∥2 versus 𝜙quad (x̂)
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Reconstructing a signal with sharp transitions
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▶ quadratic smoothing smooths out noise and sharp transitions in signal
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Total variation reconstruction
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▶ total variation smoothing preserves sharp transitions in signal
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Robust approximation

▶ minimize ∥Ax − b∥ with uncertain A

▶ two approaches:
– stochastic: assume A is random, minimize E ∥Ax − b∥
– worst-case: set A of possible values of A, minimize supA∈A ∥Ax − b∥

▶ tractable only in special cases (certain norms ∥ · ∥, distributions, sets A)
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Example

A(u) = A0 + uA1, u ∈ [−1, 1]
▶ xnom minimizes ∥A0x − b∥2

2
▶ xstoch minimizes E ∥A(u)x − b∥2

2
with u uniform on [−1, 1]

▶ xwc minimizes sup−1≤u≤1 ∥A(u)x − b∥2
2

plot shows r(u) = ∥A(u)x − b∥2 versus u
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Stochastic robust least-squares

▶ A = Ā + U, U random, E U = 0, E UTU = P

▶ stochastic least-squares problem: minimize E ∥(Ā + U)x − b∥2
2

▶ explicit expression for objective:

E ∥Ax − b∥2
2 = E ∥Āx − b + Ux∥2

2

= ∥Āx − b∥2
2 + E xTUTUx

= ∥Āx − b∥2
2 + xTPx

▶ hence, robust least-squares problem is equivalent to: minimize ∥Āx − b∥2
2 + ∥P1/2x∥2

2

▶ for P = 𝛿I, get Tikhonov regularized problem: minimize ∥Āx − b∥2
2 + 𝛿∥x∥2

2
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Worst-case robust least-squares
▶ A = {Ā + u1A1 + · · · + upAp | ∥u∥2 ≤ 1} (an ellipsoid in Rm×n)
▶ worst-case robust least-squares problem is

minimize supA∈A ∥Ax − b∥2
2 = sup∥u∥2≤1 ∥P(x)u + q(x)∥2

2

where P(x) =
[

A1x A2x · · · Apx
]
, q(x) = Āx − b

▶ from book appendix B, strong duality holds between the following problems

maximize ∥Pu + q∥2
2

subject to ∥u∥2
2 ≤ 1

minimize t + 𝜆

subject to


I P q
PT 𝜆I 0
qT 0 t

 ⪰ 0

▶ hence, robust least-squares problem is equivalent to SDP

minimize t + 𝜆

subject to


I P(x) q(x)
P(x)T 𝜆I 0
q(x)T 0 t

 ⪰ 0
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Example

▶ r(u) = ∥(A0 + u1A1 + u2A2)x − b∥2, u uniform on unit disk
▶ three choices of x:

– xls minimizes ∥A0x − b∥2
– xtik minimizes ∥A0x − b∥2

2 + 𝛿∥x∥2
2 (Tikhonov solution)

– xrls minimizes supA∈A ∥Ax − b∥2
2 + ∥x∥2

2
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