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Norm approximation

> minimize ||Ax — b||, with A € R™" m > n, || - || is any norm

v

approximation: Ax* is the best approximation of b by a linear combination of columns of A

> geometric: Ax* is point in R(A) closest to b (in norm || - ||)
> estimation: linear measurement model y = Ax + v
— measurement y, v is measurement error, x is to be estimated
— implausibility of v is ||v||
— given y = b, most plausible x is x*
> optimal design: x are design variables (input), Ax is result (output)

— x* is design that best approximates desired result b (in norm || - ||)
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Examples

» Euclidean approximation (|| - ||2)
— solution x* = ATh

» Chebyshev or minimax approximation (|| - ||e)
— can be solved via LP
minimize ¢
subjectto -1 <Ax-b =<1l
> sum of absolute residuals approximation (|| - ||1)
— can be solved via LP
minimize 17y
subjectto -y <Ax-b<y
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Penalty function approximation

minimize  ¢(ry) +- -+ ¢(ry)
subjectto r=Ax-b

(A e R™" ¢ : R — Ris a convex penalty function)

examples 2
> quadratic: ¢(u) = u? log barrier
. adrati
» deadzone-linear with width a: " updratic
=
¢(u) = max{0, |u| - a} 3 ! deadzone-linear
> log-barrier with limit a: 0.5
¢(M) = _az log(l a (u/a)z) |u| <da 0] 5 1 0.5 0 0.5 1 1.5
T o otherwise : Tou :
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Example: histograms of residuals

A € R!%%30; shape of penalty function affec

absolute value ¢ () = |u|

o
square ¢ (u) = u? 2
£ 2
deadzone ¢ (i) = max{0, |u|-0.5} §
3
log-barrier ¢(u) = —log(1 — u?) §
S

Convex Optimization

ts distribution of residuals

WHHHHW

0 1

2 -1 2
\FHTMHH (e nnnM
2 -1 0 2

1

-2 -1 0 2

r

Boyd and Vandenberghe

6.5



Huber penalty function

S

2 SN
| u lu| <M 5 !

Prup (1) = { MQlu| M) |ul >M <

05 3

> linear growth for large u makes approximation less sensitive to outliers
> called a robust penalty
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Example

20 o
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» 42 points (circles) ¢;, y;, with two outliers
» affine function f(¢) = a + Bt fit using quadratic (dashed) and Huber (solid) penalty
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Least-norm problems

> |east-norm problem:
minimize  ||x|
subjectto Ax =0,

with A € R™" m < n, || - || is any norm

> geometric: x* is smallest point in solution set {x | Ax = b}
> estimation:
— b = Ax are (perfect) measurements of x
— ||x|| is implausibility of x
— x* is most plausible estimate consistent with measurements
> design: x are design variables (inputs); b are required results (outputs)
— x* is smallest (‘most efficient’) design that satisfies requirements
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Examples

> least Euclidean norm (|| - [|2)
— solution x = ATH (assuming b € R(A))

> least sum of absolute values (|| - [|1)

— can be solved via LP
minimize 17y
subjectto —-y<x=<y, Ax=b

— tends to yield sparse x*
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Regularized approximation

> a bi-objective problem:

minimize (w.r.t. R2)  (||Ax = b, |1x]|)

v

A € R™" norms on R™ and R" can be different
> interpretation: find good approximation Ax =~ b with small x

> estimation: linear measurement model y = Ax + v, with prior knowledge that ||x|| is small

> optimal design: small x is cheaper or more efficient, or the linear model y = Ax is only valid
for small x

> robust approximation: good approximation Ax ~ b with small x is less sensitive to errors
in A than good approximation with large x
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Scalarized problem

> minimize ||Ax — b|| + y/||x||
> solution for y > 0 traces out optimal trade-off curve
> other common method: minimize ||Ax — b||? + 6||x||> with § > 0

» with || - ||, called Tikhonov regularization or ridge regression
minimize  [|Ax — b||3 + 6]Ix||3

> can be solved as a least-squares problem

2

q

minimize H[ \/%1 ]x—

with solution x* = (ATA + 61)"'ATh

2
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Optimal input design

> linear dynamical system (or convolution system) with impulse response #:

13

Y0 = h(u(t=7), 1=0,1,...,N

=0

> input design problem: multicriterion problem with 3 objectives

— tracking error with desired output yges: Jirack = Sno (V() = Ves (1)?

— input magnitude: Jmag = XN u(1)?

— input variation: Jger = Zﬁal(u(m 1) - u(t))2

track desired output using a small and slowly varying input signal

> regularized least-squares formulation: minimize Jiack + 6Jder + 7Jmag
— for fixed &, 7, a least-squares problem in u(0), ..., u(N)
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Example

> minimize Jirack + 0Jder + 7 mag
> (top) 6 =0, small n; (middle) 6 = 0, larger n; (bottom) large ¢
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Signal reconstruction

» bi-objective problem:

minimize (w.r.t. R2) (|13 = xcorll2, ¢ (%))

x € R" is unknown signal

— Xcor = X + v is (known) corrupted version of x, with additive noise v
variable X (reconstructed signal) is estimate of x

— ¢ : R" — Riis regularization function or smoothing objective

> examples:
— quadratic smoothing, ¢quad (£) = X7 (i1 — %)
— total variation smoothing, ¢ (%) = Zl’.’:‘ll |Rie1 — Xil
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Quadratic smoothing example
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original signal x and noisy signal x¢or
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three solutions on trade-off curve
”)AC - xcor||2 versus ¢quad(5€)
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Reconstructing a signal with sharp transitions

0 500 1000 1500 2000

2 T T T
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1 1

three solutions on trade-off curve

original signal x and noisy signal xco [IX = Xcorll2 VErsus dquad (%)
cor qua

» quadratic smoothing smooths out noise and sharp transitions in signal
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Total variation reconstruction
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three solutions on trade-off curve
|X — Xcorll2 VErsus ¢y, (%)

» total variation smoothing preserves sharp transitions in signal
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Robust approximation

> minimize ||Ax — b|| with uncertain A

> two approaches:

— stochastic: assume A is random, minimize E ||Ax — b||
— worst-case: set A of possible values of A, minimize sup, ¢ # [|Ax — b]|

> tractable only in special cases (certain norms || -

|, distributions, sets \A)
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Example

A(u) =Ag+uA,ue [-1,1]
> Xnom Minimizes ||Aox — b]|3
> Xgoch Minimizes E ||A(u)x — bl[3
with & uniform on [-1, 1]
> xye Minimizes sup_; ., <; lA(u)x - bl[3

plot shows r(u) = ||A(u)x — b|| versus u
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Stochastic robust least-squares

» A=A+ U,Urandom,EU=0,EUTU=P

v

stochastic least-squares problem: minimize E ||(A + U)x — b||§

» explicit expression for objective:
E|Ax-bl5 = E|Ax-b+Ux|}
= | Ax-b|3+Ex"UTUx
= ||Ax - b|l5 +x" Px
> hence, robust least-squares problem is equivalent to: minimize ||Ax — b||2 + ||P'/%x||2
> for P = 61, get Tikhonov regularized problem: minimize ||Ax — b||§ + 5||x||%
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Worst-case robust least-squares

> A={A+uwAs +- - +upA, | |lull2 < 1} (an ellipsoid in R"™")
> worst-case robust least-squares problem is

minimize  supsc 4 lAX = bII3 = supyy, <; IP(X)u+q(x)ll3

where P(x) = [ Aix Axx --- Apx ], g(x) =Ax-b
» from book appendix B, strong duality holds between the following problems
maximize  ||Pu +ql|3 minimize 1+ 4
subjectto ||u||? < 1 I P g
subjectto | PT Al 0 [ >0
gt 0 ¢t

> hence, robust least-squares problem is equivalent to SDP

minimize t+A4
I P(x) qx)
subjectto | P(x)T Al 0 (=0
q(x)T 0 t
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Example

> r(u) = ||(Ag + u1Ay + upAz)x — b||2, u uniform on unit disk
> three choices of x:

— x5 minimizes ||Agx — b||2
— Xk minimizes [|Agx — b]|3 + 6]|x]13 (Tikhonov solution)

~ Xys Minimizes supy ¢ 7 IAx — b[3 + ||x13

% "l HHHH@}EEWHHHH@HHWW
r(u) ‘
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