Convex Optimization

Stephen Boyd Lieven Vandenberghe

Revised slides by Stephen Boyd, Lieven Vandenberghe, and Parth Nobel

6. Approximation and fitting

Outline

Norm and penalty approximation

Regularized approximation

Robust approximation

Norm approximation

- ▶ minimize ||Ax b||, with $A \in \mathbf{R}^{m \times n}$, $m \ge n$, $|| \cdot ||$ is any norm
- **approximation**: Ax^* is the best approximation of b by a linear combination of columns of A
- **geometric**: Ax^* is point in $\mathcal{R}(A)$ closest to b (in norm $\|\cdot\|$)
- **estimation**: linear measurement model y = Ax + v
 - measurement y, v is measurement error, x is to be estimated
 - implausibility of v is ||v||
 - given y = b, most plausible x is x^*
- **optimal design**: *x* are design variables (input), *Ax* is result (output)
 - $-x^{\star}$ is design that best approximates desired result b (in norm $\|\cdot\|$)

Examples

- Euclidean approximation ($\|\cdot\|_2$)
 - solution $x^{\star} = A^{\dagger}b$
- Chebyshev or minimax approximation $(\| \cdot \|_{\infty})$
 - can be solved via LP

 $\begin{array}{ll} \text{minimize} & t\\ \text{subject to} & -t\mathbf{1} \leq Ax - b \leq t\mathbf{1} \end{array}$

sum of absolute residuals approximation $(\| \cdot \|_1)$

- can be solved via LP

 $\begin{array}{ll} \text{minimize} & \mathbf{1}^T y\\ \text{subject to} & -y \leq Ax - b \leq y \end{array}$

Penalty function approximation

minimize $\phi(r_1) + \dots + \phi(r_m)$ subject to r = Ax - b

 $(A \in \mathbf{R}^{m \times n}, \phi : \mathbf{R} \to \mathbf{R} \text{ is a convex penalty function})$

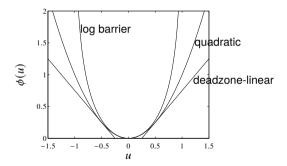
examples

- quadratic: $\phi(u) = u^2$
- deadzone-linear with width a:

$$\phi(u) = \max\{0, |u| - a\}$$

► log-barrier with limit *a*:

$$\phi(u) = \begin{cases} -a^2 \log(1 - (u/a)^2) & |u| < a \\ \infty & \text{otherwise} \end{cases}$$



Convex Optimization

Example: histograms of residuals

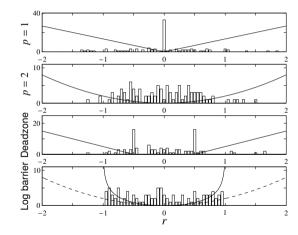
 $A \in \mathbf{R}^{100 \times 30}$; shape of penalty function affects distribution of residuals

absolute value $\phi(u) = |u|$

square $\phi(u) = u^2$

deadzone
$$\phi(u) = \max\{0, |u| - 0.5\}$$

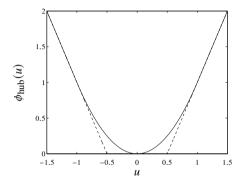
log-barrier
$$\phi(u) = -\log(1-u^2)$$



Convex Optimization

Huber penalty function

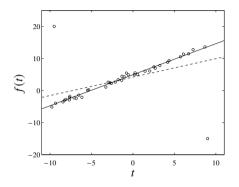
$$\phi_{\text{hub}}(u) = \begin{cases} u^2 & |u| \le M\\ M(2|u| - M) & |u| > M \end{cases}$$



linear growth for large u makes approximation less sensitive to outliers

called a robust penalty

Example



• 42 points (circles) t_i , y_i , with two outliers

• affine function $f(t) = \alpha + \beta t$ fit using quadratic (dashed) and Huber (solid) penalty

Convex Optimization

Least-norm problems

least-norm problem:

minimize ||x||subject to Ax = b,

with $A \in \mathbf{R}^{m \times n}$, $m \le n$, $\|\cdot\|$ is any norm

- **geometric:** x^* is smallest point in solution set $\{x \mid Ax = b\}$
- estimation:
 - b = Ax are (perfect) measurements of x
 - ||x|| is implausibility of x
 - $-x^{\star}$ is most plausible estimate consistent with measurements
- **design:** *x* are design variables (inputs); *b* are required results (outputs)
 - $-x^{\star}$ is smallest ('most efficient') design that satisfies requirements

Examples

- least Euclidean norm ($\|\cdot\|_2$)
 - solution $x = A^{\dagger}b$ (assuming $b \in \mathcal{R}(A)$)
- least sum of absolute values $(\| \cdot \|_1)$
 - can be solved via LP

 $\begin{array}{ll} \text{minimize} & \mathbf{1}^T y\\ \text{subject to} & -y \leq x \leq y, \quad Ax = b \end{array}$

- tends to yield sparse x^{\star}

Norm and penalty approximation

Regularized approximation

Robust approximation

Regularized approximation

a bi-objective problem:

minimize (w.r.t.
$$\mathbf{R}^2_+$$
) ($||Ax - b||, ||x||$)

- ► $A \in \mathbf{R}^{m \times n}$, norms on \mathbf{R}^m and \mathbf{R}^n can be different
- interpretation: find good approximation $Ax \approx b$ with small x
- **estimation:** linear measurement model y = Ax + v, with prior knowledge that ||x|| is small
- optimal design: small x is cheaper or more efficient, or the linear model y = Ax is only valid for small x
- **robust approximation:** good approximation $Ax \approx b$ with small x is less sensitive to errors in A than good approximation with large x

Scalarized problem

• minimize $||Ax - b|| + \gamma ||x||$

- solution for $\gamma > 0$ traces out optimal trade-off curve
- other common method: minimize $||Ax b||^2 + \delta ||x||^2$ with $\delta > 0$
- with $\|\cdot\|_2$, called Tikhonov regularization or ridge regression

minimize $||Ax - b||_2^2 + \delta ||x||_2^2$

can be solved as a least-squares problem

minimize
$$\left\| \begin{bmatrix} A \\ \sqrt{\delta I} \end{bmatrix} x - \begin{bmatrix} b \\ 0 \end{bmatrix} \right\|_{2}^{2}$$

with solution
$$x^{\star} = (A^T A + \delta I)^{-1} A^T b$$

Optimal input design

linear dynamical system (or convolution system) with impulse response h:

$$y(t) = \sum_{\tau=0}^{t} h(\tau)u(t-\tau), \quad t = 0, 1, \dots, N$$

input design problem: multicriterion problem with 3 objectives

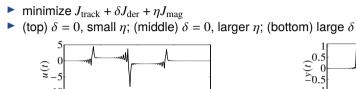
- tracking error with desired output y_{des} : $J_{track} = \sum_{t=0}^{N} (y(t) y_{des}(t))^2$
- input magnitude: $J_{\text{mag}} = \sum_{t=0}^{N} u(t)^2$
- input variation: $J_{der} = \sum_{t=0}^{N-1} (u(t+1) u(t))^2$

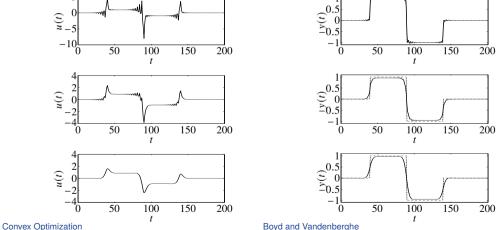
track desired output using a small and slowly varying input signal

regularized least-squares formulation: minimize $J_{\text{track}} + \delta J_{\text{der}} + \eta J_{\text{mag}}$

- for fixed δ , η , a least-squares problem in $u(0), \ldots, u(N)$

Example





Signal reconstruction

bi-objective problem:

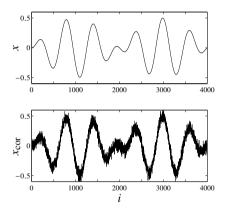
minimize (w.r.t. \mathbf{R}^{2}_{+}) $(\|\hat{x} - x_{cor}\|_{2}, \phi(\hat{x}))$

- $-x \in \mathbf{R}^n$ is unknown signal
- $-x_{cor} = x + v$ is (known) corrupted version of x, with additive noise v
- variable \hat{x} (reconstructed signal) is estimate of x
- $-\phi: \mathbf{R}^n \to \mathbf{R}$ is regularization function or smoothing objective

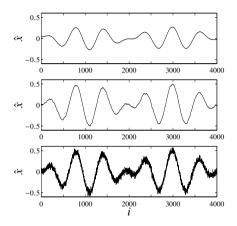
examples:

- quadratic smoothing, $\phi_{\text{quad}}(\hat{x}) = \sum_{i=1}^{n-1} (\hat{x}_{i+1} \hat{x}_i)^2$
- total variation smoothing, $\phi_{tv}(\hat{x}) = \sum_{i=1}^{n-1} |\hat{x}_{i+1} \hat{x}_i|$

Quadratic smoothing example



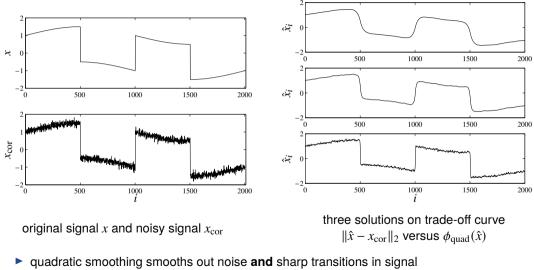
original signal x and noisy signal x_{cor}



three solutions on trade-off curve $\|\hat{x} - x_{cor}\|_2$ versus $\phi_{quad}(\hat{x})$

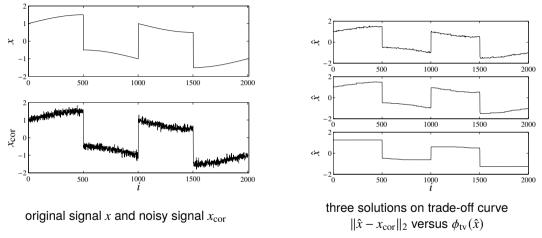
Convex Optimization

Reconstructing a signal with sharp transitions



Convex Optimization

Total variation reconstruction



total variation smoothing preserves sharp transitions in signal

Convex Optimization

Outline

Norm and penalty approximation

Regularized approximation

Robust approximation

Robust approximation

- minimize ||Ax b|| with uncertain A
- two approaches:
 - **stochastic**: assume *A* is random, minimize $\mathbf{E} ||Ax b||$
 - worst-case: set \mathcal{R} of possible values of A, minimize $\sup_{A \in \mathcal{R}} ||Ax b||$
- ► tractable only in special cases (certain norms || · ||, distributions, sets A)

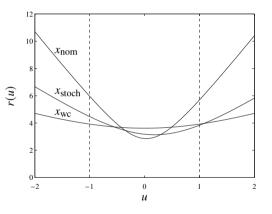
Example

 $A(u) = A_0 + uA_1, u \in [-1, 1]$

- ► x_{nom} minimizes $||A_0x b||_2^2$
- ► x_{stoch} minimizes $\mathbf{E} ||A(u)x b||_2^2$ with *u* uniform on [-1, 1]

•
$$x_{wc}$$
 minimizes $\sup_{-1 \le u \le 1} ||A(u)x - b||_2^2$

plot shows $r(u) = ||A(u)x - b||_2$ versus u



Stochastic robust least-squares

•
$$A = \overline{A} + U$$
, U random, $\mathbf{E} U = 0$, $\mathbf{E} U^T U = P$

► stochastic least-squares problem: minimize $\mathbf{E} \| (\bar{A} + U)x - b \|_2^2$

explicit expression for objective:

$$\begin{aligned} \mathbb{E} \|Ax - b\|_{2}^{2} &= \mathbb{E} \|\bar{A}x - b + Ux\|_{2}^{2} \\ &= \|\bar{A}x - b\|_{2}^{2} + \mathbb{E} x^{T} U^{T} Ux \\ &= \|\bar{A}x - b\|_{2}^{2} + x^{T} Px \end{aligned}$$

▶ hence, robust least-squares problem is equivalent to: minimize $\|\bar{A}x - b\|_2^2 + \|P^{1/2}x\|_2^2$

► for $P = \delta I$, get Tikhonov regularized problem: minimize $\|\bar{A}x - b\|_2^2 + \delta \|x\|_2^2$

Worst-case robust least-squares

• $\mathcal{A} = \{\overline{A} + u_1A_1 + \dots + u_pA_p \mid ||u||_2 \le 1\}$ (an ellipsoid in $\mathbb{R}^{m \times n}$)

worst-case robust least-squares problem is

minimize
$$\sup_{A \in \mathcal{A}} ||Ax - b||_2^2 = \sup_{||u||_2 \le 1} ||P(x)u + q(x)||_2^2$$

where $P(x) = \begin{bmatrix} A_1x & A_2x & \cdots & A_px \end{bmatrix}$, $q(x) = \bar{A}x - b$

from book appendix B, strong duality holds between the following problems

$$\begin{array}{ll} \text{maximize} & \|Pu+q\|_2^2 & \text{minimize} & t+\lambda \\ \text{subject to} & \|u\|_2^2 \le 1 & \\ & \text{subject to} & \begin{bmatrix} I & P & q \\ P^T & \lambda I & 0 \\ q^T & 0 & t \end{bmatrix} \ge 0 \end{array}$$

hence, robust least-squares problem is equivalent to SDP

$$\begin{array}{ll} \text{minimize} & t + \lambda \\ \text{subject to} & \left[\begin{array}{ccc} I & P(x) & q(x) \\ P(x)^T & \lambda I & 0 \\ q(x)^T & 0 & t \end{array} \right] \geq 0 \\ \end{array}$$

Convex Optimization

Example

► $r(u) = ||(A_0 + u_1A_1 + u_2A_2)x - b||_2$, *u* uniform on unit disk

three choices of x:

- x_{ls} minimizes $||A_0x b||_2$
- x_{tik} minimizes $||A_0x b||_2^2 + \delta ||x||_2^2$ (Tikhonov solution)
- x_{rls} minimizes $\sup_{A \in \mathcal{A}} ||Ax b||_2^2 + ||x||_2^2$

