
EE363 Prof. S. Boyd

EE363 homework 5 solutions

1. One-step ahead prediction of an autoregressive time series. We consider the following
autoregressive (AR) system

pt+1 = αpt + βpt−1 + γpt−2 + wt, yt = pt + vt.

Here p is the (scalar) time series we are interested in, and y is the scalar measurement
available to us. The process noise w is IID zero mean Gaussian, with variance 1. The
sensor noise v is IID Gaussian with zero mean and variance 0.01. Our job is to estimate
pt+1, based on knowledge of y0, . . . , yt. We will use the parameter values

α = 2.4, β = −2.17, γ = 0.712.

(a) Find the steady state covariance matrix Σx of the state

xt =






pt

pt−1

pt−2




 .

(b) Run three simulations of the system, starting from statistical steady state. Plot
pt for each of your three simulations.

(c) Find the steady-state Kalman filter for the estimation problem, and simulate it
with the three realizations found in part (b). Plot the one-step ahead prediction
error for the three realizations.

(d) Find the variance of the prediction error, i.e., E(p̂t − pt)
2. Verify that this is

consistent with the performance you observed in part (c).

Solution:

(a) We start by writing the state space equations for this system:






pt+1

pt

pt−1




 =






α β γ

1 0 0
0 1 0






︸ ︷︷ ︸

A






pt

pt−1

pt−2




+






1
0
0






︸ ︷︷ ︸

B

wt,

and

yt =
[

1 0 0
]

︸ ︷︷ ︸

C






pt

pt−1

pt−2




+ vt.

1

The steady state covariance matrix Σx is found by solving the Lyapunov equation

Σx = AΣxA
T +BσwB

T ,

which is done in Matlab by Sigma_x = dlyap(A,B*B’), giving the result

Σx =






82.2 73.7 50.8
73.7 82.2 73.7
50.8 73.7 82.2






(to two significant figures).

(b) A simple Matlab code that runs one simulation follows.

% starting from statistical steady state

X = [sqrtm(Sigma_x)*randn(3,1) zeros(3,N)];

sqrtW=sqrtm(W);

for t = 1:N

X(:,t+1) = A*X(:,t) + B*sqrtW*randn(1,1);

end

Running this three times gives the plot

0 100 200 300 400 500 600 700 800 900 1000
−40

−20

0

20

40

0 100 200 300 400 500 600 700 800 900 1000
−40

−20

0

20

40

0 100 200 300 400 500 600 700 800 900 1000
−40

−20

0

20

40

t

(c) We can solve the DARE directly, or by iterating the Riccati recursion. We then
calculate the observer gain matrix L. Below is a Matlab code that finds Σx both
ways and then the observer gain L.

% using the dare

Sigma_dare = dare(A’,C’,B*W*B’,V,zeros(3,1),eye(3));

2

% recursively

Sigma = X;

for(i = 1:N)

% measurement update

Sigma = Sigma - Sigma*(C’)*inv(C*Sigma*(C’) + V)*C*Sigma;

% time update

Sigma = A*Sigma*(A’) + B*W*B’;

end

%compare the two

Sigma - Sigma_dare

L = A*Sigma*C’*inv(C*Sigma*C’ + V);

This gives the observer gain

L =






2.3206
0.9910
0.0209




 .

For each simulation we need to run our steady state Kalman filter, here is a
Matlab code that does this for one simulation

xhat = zeros(3,N+1);

for(t = 1:N)

xhat(:,t+1) = A*xhat(:,t) + L*(Y(t) - C*xhat(:,t));

end

We plot the resulting prediction error (x̂t)1 − pt.

3

0 100 200 300 400 500 600 700 800 900 1000
−10

−5

0

5

10

0 100 200 300 400 500 600 700 800 900 1000
−10

−5

0

5

10

0 100 200 300 400 500 600 700 800 900 1000
−20

−10

0

10

20

t

(d) We calculate the mean square prediction error using

E e2t = E (Cxt + vt − Cx̂t)
2 = E (Cxt + vt − Cx̂t)

2

= E (Cx̃t + vt)
2 = CΣxC

T + V = 1.1

All our random variables are Gaussian, so the prediction error (which is a linear
combination of our random variables) is Gaussian as well. Looking at a histogram
of the prediction error we expect about 67% of the prediction errors to fall within

one standard deviation (i.e.,
√

E e2t) of our prediction error.

−8 −6 −4 −2 0 2 4 6 8
0

20

40

60

80

100

120

140

160

180

200

4

To ease comparision we have marked in ±
√

E e2t on the histogram.

2. Performance of Kalman filter when the system dynamics change. We consider the
Gauss-Markov system

xt+1 = Axt + wt, yt = Cxt + vt, (1)

with v and w are zero mean, with covariance matrices V > 0 and W ≥ 0, respectively.
We’ll call this system the nominal system.

We’ll consider another Gauss-Markov sysem, which we call the perturbed system:

xt+1 = (A+ δA)xt + wt, yt = Cxt + vt, (2)

where δA ∈ R
n×n. Here (for simplicity) C, V , and W are the same as for the nominal

system; the only difference between the perturbed system and the nominal system is
that the dynamics matrix is A+ δA instead of A.

In this problem we examine what happens when you design a Kalman filter for the
nominal system (1), and use it for the perturbed system (2).

Let L denote the steady-state Kalman filter gain for the nominal system (1), i.e., the
steady-state Kalman filter for the nominal system is

x̂t+1 = Ax̂t + L(yt − ŷt), ŷt = Cx̂t. (3)

(We’ll assume that (C,A) is observable and (A,W) is controllable, so the steady-state
Kalman filter gain L exists, is unique, and A− LC is stable.)

Now suppose we use the filter (3) on the perturbed system (2).

We will consider the specific case

A =






1.8 −1.4 0.5
1 0 0
0 1 0




 , δA =






0.1 −0.2 0.1
0 0 0
0 0 0




 ,

C = [1 0 0], W = I, V = 0.01.

(a) Find the steady-state value of E ‖xt‖2, for the nominal system, and also for the
perturbed system.

(b) Find the steady-state value of E ‖x̂t − xt‖2, where x is the state of the perturbed
system, and x̂ is the state of the Kalman filter (designed for the nominal system).
(In other words, find the steady-state mean square value of the one step ahead
prediction error, using the Kalman filter designed for the nominal system, but
with the perturbed system.)

Compare this to Tr Σ̂, where Σ̂ is the steady-state one step ahead prediction error
covariance, when the Kalman filter is run with the nominal system. (Tr Σ̂ gives
the steady-state value of E ‖x̂t − xt‖

2, when x evolves according to the nominal
system.)

5

Solution:

(a) We first check that the nominal and perturbed systems are stable (otherwise
talking about the steady-state of ‖xt‖2 is meaningless). Both are verified to be
stable (by computing the eigenvalues, for example.)

We find the steady state covariance matrix for the state of the nominal system by
solving the Lyapunov equation Σ = AΣAT +W . The mean square value E ‖xt‖2

is then given by TrΣ. We repeat this for the perturbded system.

Sigma_xn = dlyap(A,W);

msXn = trace(Sigma_xn)

Sigma_xp = dlyap(A+dA,W);

msXp = trace(Sigma_xp)

which gives the values

E ‖xt‖
2 = 74.1, E ‖xt‖

2 = 97.88,

for the nominal and perturbed systems, respectively.

(b) We start by designing a steady state Kalman filter for the nominal system, for
example by solving the Riccati equation

Σ̂ = AΣ̂AT +W −AΣ̂CT (CΣ̂CT + V)−1CΣ̂AT ,

and then we find the Kalman filter gain L by

L = AΣ̂CT (CΣ̂CT + V)−1.

The dynamics of the Kalman filter, running with the perturbed system, are given
by

xt+1 = (A+ δA)xt + wt

x̂t+1 = Ax̂t + L(Cxt + vt − Cx̂t)

= LCxt + (A− LC)x̂t + Lvt.

We can write this as one big linear 2n-state system,

[

xt+1

x̂t+1

]

=

[

A + δA 0
LC A− LC

]

︸ ︷︷ ︸

Ã

[

xt

x̂t

]

︸ ︷︷ ︸

x̃t

+

[

wt

Lvt

]

︸ ︷︷ ︸

w̃t

.

We find Σ̃, the steady-state covariance matrix of x̃t by solving the Lyapunov
equation

Σ̃ = ÃΣ̃ÃT + W̃ ,

6

where the covariance matrix of w̃t is

W̃ =

[

W 0
0 LV LT

]

.

To find E ‖x̂t − xt‖2, we first find the covariance of z = x̂− x = [−I I]x̃:

E zzT = E([−I I]x̃)([−I I]x̃)T

= [−I I]E x̃x̃T [−I I]T

= [−I I]Σ̃[−I I].

Taking the trace of this yields E ‖x̂t − xt‖2.

To get numerical values we use the matlab code below:

%kf for the system (A,C)

Sigmahat = dare(A’,C’,W,V,zeros(n,1),eye(n));

L = A*Sigmahat*(C’)*inv(C*Sigmahat*(C’) - V);

%the steady state covariance matrix of xtilde,

Xtildess = dlyap([(A+dA) zeros(n,n);(L*C) (A - L*C)],...

[W zeros(n,n);zeros(n,n) (L*V*(L’))]);

% we calculate the ss, ms errors

msprederr = trace([-eye(n) eye(n)]*Xtildess*[-eye(n);eye(n)]);

msprederrnomin = trace(Sigmahat)

which gives the numerical values

E ‖x̂t − xt‖
2 = 7.2 Tr Σ̂ = 6.37.

3. Open-loop control. We consider a linear dynamical system with n states and m inputs,

xt+1 = Axt +But + wt, t = 0, 1, . . . ,

where wt are IID N (0,Σw), and x0 ∼ N (0,Σ0) is independent of all wt. The objective
is

J = E

(
N−1∑

t=0

(

xT
t Qxt + uT

t Rut

)

+ xT
NQfxN

)

where Q ≥ 0, Qf ≥ 0, and R > 0.

In the standard stochastic control setup, we choose ut as a function of the current state
xt, so we have ut = φt(xt), t = 0, . . . , N − 1. In open-loop control, we choose ut as a
function of the initial state x0 only, so we have ut = ψt(x0), t = 0, . . . , N − 1. Thus,
in open-loop control, we must commit to an input sequence at time t = 0, based only
on knowledge of the initial state x0; in particular, there is no opportunity for recourse

7

or changes in the input due to new observations. The open loop control problem is to
choose the control functions ψ0, . . . , ψN−1 that minimize the objective J .

In this exercise, you will derive explicit expressions for the optimal control functions
ψ⋆

0, . . . , ψ
⋆
N−1, for the open-loop control problem. The problem data are A, B, Σw, Q,

Qf , and R, and N .

Show that the optimal control functions are ψ⋆
0(x0) = K0x0, and

ψ⋆
t (x0) = Kt(A+BKt−1) · · · (A +BK0)x0, t = 1, . . . , N − 1,

where
Kt = −(R +BTPt+1B)−1BTPt+1A, t = 0, . . . , N − 1,

and

Pt = Q+ ATPt+1A− ATPt+1B(R +BTPt+1B)−1BTPt+1A, t = N − 1, . . . , 0,

with PN = Qf . In other words, we can solve the open-loop control problem by solving
the deterministic LQR problem obtained by taking w0 = w1 = · · · = wN−1 = 0.

Solution.

Let V0(z) denote the optimal value of the objective, starting from t = 0 at x0 = z.
Since we must commit to an input sequence given x0 = z, we can express V0(z) as

V0(z) = min
u0,...,uN−1

E

(
N−1∑

t=0

(

xT
t Qxt + uT

t Rut

)

+ xT
NQfxN

)

,

subject to the system dynamics, and x0 = z. Let’s define X = (x1, . . . , xN) ∈ R
nN ,

U = (u0, u1, . . . , uN−1) ∈ R
mN , and W = (w0, w1, . . . , wN−1) ∈ R

nN . We can write

X = Fx0 +GU +HW,

where

F =









A

A2

...
AN









, G =









B 0 · · · 0
AB B · · · 0
...

...
. . .

...
AN−1B AN−2B · · · B









, H =









I 0 · · · 0
A I · · · 0
...

...
. . .

...
AN−1 AN−2 · · · I









.

Thus we have

V0(z) = min
U

{

E

(

zTQz + (Fz + GU +HW)T Q̃(Fz +GU +HW) + UT R̃U
)}

= min
U

{

zT (Q+ F T Q̃F)z + UT (R̃ +GT Q̃G)U + 2zTF T Q̃GU + E(W THT Q̃HW)
}

= min
U

{

zT (Q+ F T Q̃F)z + UT (R̃ +GT Q̃G)U + 2zTF T Q̃GU
}

+ E(W THT Q̃HW)

= min
U

{

zTQz + (Fz +GU)T Q̃(Fz +GU) + UT R̃U
}

+ E(W THT Q̃HW),

8

where,

Q̃ =









Q 0 · · · 0
0 Q · · · 0
...

...
. . .

...
0 0 · · · Qf









, R̃ =









R 0 · · · 0
0 R · · · 0
...

...
. . .

...
0 0 · · · R









.

We notice that minimizing

zTQz + (Fz +GU)T Q̃(Fz +GU) + UT R̃U

is equivalent to solving the deterministic LQR problem

minimize
N−1∑

t=0

(

xT
t Qxt + uT

t Rut

)

+ xT
NQfxN ,

subject to
xt+1 = Axt +But, t = 0, . . . , N − 1,

with x0 = z. Thus we get ψ⋆
0(z) = u⋆

0 = K0z and

ψ⋆
t (z) = u⋆

t = Ktxt = Kt(A +BKt−1) · · · (A+BK0)z, t = 0, . . . , N − 1,

where
Kt = −(R +BTPt+1B)−1BTPt+1A, t = 0, . . . , N − 1,

and

Pt = Q+ ATPt+1A− ATPt+1B(R +BTPt+1B)−1BTPt+1A, t = N − 1, . . . , 0,

with PN = Qf .

4. Simulation of a Gauss-Markov system from statistical steady-state. We consider a
Gauss-Markov system,

xt+1 = Axt + wt,

where A ∈ R
n×n is stable (i.e., its eigenvalues all have magnitude less than one), wt

are IID with wt ∼ N (0,W), and x0 ∼ N (0,Σ0), independent of all wt. Let Σx denote
the asymptotic value of the state covariance. If x0 ∼ N (0,Σx) (i.e., Σ0 = Σx), then
we have Ext = 0 and Extx

T
t = Σt for all t. We refer to this as statistical equilibrium,

or statistical steady-state.

Generate a random A ∈ R
10×10 in Matlab using A = randn(n), then scaling it so its

spectral radius (maximum magnitude of all eigenvalues) is 0.99. Choose W to be a
random positive semidefinite matrix, for example using W = randn(n); W = W’*W;.
Create two sets of 50 trajectories for 100 time steps; in one set, initialize with x0 = 0,
in the other, with x0 ∼ N (0,Σx).

Create two plots, overlaying the trajectories of (xt)1 within each set. Comment briefly
on what you see.

9

Solution.

To calculate Σx, we solve (using, for example, dlyap) the Lyapunov equation

Σx = AΣxA
T +W.

We use this to generate and plot trajectories in Matlab.

Matlab code and the resulting graphs appear below.

randn(’state’, 2920); n = 10; N = 100;

A = randn(n); A = (0.99/max(abs(eig(A))))*A;

W = randn(n); W = W’*W; Whalf = sqrtm(W); Ex = dlyap(A, W);

subplot(211); cla reset; hold on; subplot(212); cla reset; hold on;

for j = 1:50

x_zero = zeros(n, N+1);

for i = 1:N

x_zero(:,i+1) = A*x_zero(:,i) + Whalf*randn(n,1);

end

x_ss = zeros(n, N); x_ss(:,1) = sqrtm(Ex)*randn(n,1);

for i = 1:N

x_ss(:,i+1) = A*x_ss(:,i) + Whalf*randn(n,1);

end

subplot(211); plot(0:N, x_zero(1,:)); subplot(212); plot(0:N, x_ss(1,:))

end

subplot(211); axis([0 N -50 50]); subplot(212); axis([0 N -50 50])

print -deps2 stat_steady_state.eps

0 10 20 30 40 50 60 70 80 90 100
−50

0

50

0 10 20 30 40 50 60 70 80 90 100
−50

0

50

10

5. Implementing a Kalman filter. In this problem you will implement a simple Kalman
filter for a linear Gauss-Markov system

xt+1 = Axt + wt, yt = Cxt + vt

with x0 ∼ N (0, I), wt ∼ N (0,W) and vt ∼ N (0, V).

Generate a system in Matlab by randomly generating a matrix A ∈ R
10×10 and scaling

it so its spectral radius is 0.95, a matrix C ∈ R
3×10, and positive definite matrices W

and V . Find the Kalman filter for this system.

Plot
√

E ‖xt‖2 and
√

E ‖xt − x̂t‖2, for t = 1, . . . , 50. Then, simulate the system for 50

time steps, plotting ‖xt‖2 and ‖xt − x̂t‖2.

Solution.

This requires a straight-forward implementation of a Kalman filter. Matlab code and
the resulting graphs appear below.

randn(’state’, 2918); m = 3; n = 10; N = 50;

A = randn(n); A = (0.95/max(abs(eig(A))))*A;

W = 0.1*randn(n); W = W’*W; Whalf = sqrtm(W);

V = 0.1*randn(m); V = V’*V; Vhalf = sqrtm(V);

C = randn(m, n);

E = eye(n); Epred = E;

normx = [sqrt(trace(E))]; normdx = [sqrt(trace(E))];

x = sqrtm(E)*randn(n,1); xhat = zeros(n,1);

normxt = [norm(x)]; normdxt = [norm(x - xhat)];

Ex = eye(n);

for t = 1:N

% Variance update.

Ex = A*Ex*A’ + W;

% Propagate the system forward.

x = A*x + Whalf*randn(n,1);

y = C*x + Vhalf*randn(m,1);

% Measurement update.

xhat = A*xhat + Epred*C’*inv(C*Epred*C’ + V)*(y - C*A*xhat);

E = Epred - Epred*C’*inv(C*Epred*C’ + V)*C*Epred;

% Time update.

Epred = A*E*A’ + W;

% For plots.

normx = [normx sqrt(trace(Ex))]; normdx = [normdx sqrt(trace(E))];

11

0 5 10 15 20 25 30 35 40 45 50
2.5

3

3.5

0 5 10 15 20 25 30 35 40 45 50
1

2

3

4

0 5 10 15 20 25 30 35 40 45 50
0

2

4

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

Figure 1: From top to bottom: E ‖xt‖2, E ‖xt − x̂t‖2; then ‖xt‖2 and ‖xt − x̂t‖2

for one particular realization.

normxt = [normxt norm(x)]; normdxt = [normdxt norm(xhat - x)];

end

subplot(411); plot(0:N, normx); subplot(412); plot(0:N, normdx)

subplot(413); plot(0:N, normxt); subplot(414); plot(0:N, normdxt)

print -deps2 kalman.eps

6. Simultaneous sensor selection and state estimation. We consider a standard state
estimation setup:

xt+1 = Axt + wt, yt = Ctxt + vt,

where A ∈ R
n×n is constant, but Ct can vary with time. The process and measurement

noise are independent of each other and the initial state x(0), with

x(0) ∼ N (0,Σ0), wt ∼ N (0,W), vt ∼ N (0, V).

The standard formulas for the Kalman filter allow you to compute the next state predic-
tion x̂t|t−1, current state prediction x̂t|t, and the associated prediction error covariances
Σt|t−1 and Σt|t.

Now we are going to introduce a twist. The measurement matrix Ct is one of K possible
values, i.e., Ct ∈ {C1, . . . , CK}. In other words, at each time t, we have Ct = Cit . The
sequence it specifies which of the K possible measurements is taken at time t. For
example, the sequence 2, 2, . . . means that Ct = C2 for all t; the sequence

1, 2, . . . , K, 1, 2 . . . , K, . . .

12

is called round-robin: we cycle through the possible measurements, in order, over and
over again.

Here’s the interesting part: you get to choose the measurement sequence i0, i1, . . . ,. You
will use the following greedy algorithm. You will choose the sequence in order; having
chosen i0, . . . , it−1, you will choose it so as to minimize the mean-square prediction
error associated with x̂t|t. This is the same as choosing it so that TrΣt|t is minimized.
Roughly speaking, at each step, you choose the sensor that results in the smallest
mean-square state prediction error, given the sensor choices you’ve made so far, plus
the one you’re choosing.

Let’s be very clear about this method for choosing it. The choice of i0, . . . , it−1 deter-
mines Σt|t−1; then, Σt|t depends on it, i.e., which of C1, . . . , CK is chosen as Ct. Among
these K choices, you pick the one that minimizes TrΣt|t.

This method does not require knowledge of the actual measurements y0, y1, . . . , so we
can determine the sequence of measurements we are going to make before any data

have been received. In particular, the sequence can be determined ahead of time (at
least up to some large value of t), and stored in a file.

Now we get to the question. You will work with the specific system with

A =






−0.6 0.8 0.5
−0.1 1.5 −1.1

1.1 0.4 −0.2




 , W = I, V = 0.12, Σ0 = I,

and K = 3 with

C1 =
[

0.74 −0.21 −0.64
]

, C2 =
[

0.37 0.86 0.37
]

, C3 =
[

0 0 1
]

.

(a) Using one sensor. Plot the mean-square current state prediction error TrΣ(t|t)
versus t, for the three special cases when Ct = C1 for all t, Ct = C2 for all t, and
Ct = C3 for all t.

(b) Round-robbin. Plot the mean-square current state prediction error TrΣ(t|t) ver-
sus t, using sensor sequence 1, 2, 3, 1, 2, 3, . . .

(c) Greedy sensor selection. Find the specific sensor sequence generated by the al-
gorithm described above. Show us the sequence, by plotting it versus t. Plot
the resulting mean-square estimation error, TrΣt|t, versus t. Briefly compare the
results to what you found in parts (a) and (b).

In all three parts, you can show the plots over the interval t = 0, . . . , 50.

To save you some time, we have created the file sens_data.m, which contains the prob-
lem data. The file also contains two lines, currently commented out, that implement
a generic Kalman filter measurement and time update. You’re welcome to use these,
or to use or write your own.

Solution.

13

(a) Let Σi(t|t) be the estimation error covariance when Ct = Ci, for all t. To plot the
evolution of the MSE with time, we just have to iteratively apply the time and
measurement update formulas from the lecture notes.

In order to find the asymptotic value of TrΣi(t|t) (which we will denote TrΣi,ss(t|t)),
we first have to solve the DARE

Σ̂i = AΣ̂iA
T +W −AΣ̂iC

T
i (CiΣ̂iC

T + V)−1CiΣ̂iA
T ,

and then apply the measurement update formula

Σi,ss(t|t) = Σ̂i − Σ̂iC
T
i (CiΣ̂iC

T + V)−1CiΣ̂i.

The following matlab code was used for this part of the problem:

sens_data

N = 50;

% Fixed Sensor Policy

Sigmahat1 = Sigma0; Sigmahat2 = Sigma0; Sigmahat3 = Sigma0;

mses1=[]; mses2 = []; mses3 = [];

for n = 1:N+1

% First sensor

C = C1;

% Measurement Update

Sigma1 = Sigmahat1-Sigmahat1*C’*inv(C*Sigmahat1*C’+V)*...

C*Sigmahat1;

% Time Update

Sigmahat1 = A*Sigma1*A’+W;

mses1 = [mses1 trace(Sigma1)];

% Second sensor

C = C2;

% Measurement Update

Sigma2 = Sigmahat2-Sigmahat2*C’*inv(C*Sigmahat2*C’+V)*...

C*Sigmahat2;

% Time Update

Sigmahat2 = A*Sigma2*A’+W;

mses2 = [mses2 trace(Sigma2)];

% Third sensor

C = C3;

% Measurement Update

Sigma3 = Sigmahat3-Sigmahat3*C’*inv(C*Sigmahat3*C’+V)*...

C*Sigmahat3;

14

% Time Update

Sigmahat3 = A*Sigma3*A’+W;

mses3 = [mses3 trace(Sigma3)];

end

figure

subplot(3,1,1)

plot(0:N,mses1)

ylabel(’mse1’)

subplot(3,1,2)

plot(0:N,mses2)

ylabel(’mse2’)

subplot(3,1,3)

plot(0:N,mses3)

ylabel(’mse3’)

xlabel(’time’)

print -deps msefixed.eps

% Find steady-state values

% First sensor

C = C1;

Shat = dare(A’,C’,W,V);

mse1 = trace(Shat-Shat*C’*inv(C*Shat*C’+V)*C*Shat)

% Second sensor

C = C2;

Shat = dare(A’,C’,W,V);

mse2 = trace(Shat-Shat*C’*inv(C*Shat*C’+V)*C*Shat)

% Third sensor

C = C3;

Shat = dare(A’,C’,W,V);

mse3 = trace(Shat-Shat*C’*inv(C*Shat*C’+V)*C*Shat)

The steady-state values of the MSE for each i are

TrΣ1,ss(t|t) = 26.01, TrΣ2,ss(t|t) = 10.69, TrΣ3,ss(t|t) = 8.44.

The following plots show the evolution of TrΣi(t|t) with time, for each i.

15

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

0 5 10 15 20 25 30 35 40 45 50
2

4

6

8

10

t

T
r
Σ

1
(t
|t
)

T
r
Σ

2
(t
|t
)

T
r
Σ

3
(t
|t
)

It is evident that the best fixed sensor choice is Ct = C3, for all t.

(b) Let Σrr(t|t) be the estimation error covariance when using a round-robbin sensor
sequence. The following matlab code calculates and plots TrΣrr(t|t), for t =
0, . . . , 50:

% Round robbin

Sigmahat = Sigma0;

mse_rr=[];

time = 1;

while(1)

% Sensor 1

C = C1;

% Measurement Update

Sigma = Sigmahat-Sigmahat*C’*inv(C*Sigmahat*C’+V)*...

C*Sigmahat;

% Time Update

Sigmahat = A*Sigma*A’+W;

mse_rr = [mse_rr trace(Sigma)];

time = time+1;

if(time>N+1), break; end

16

% Sensor 2

C = C2;

% Measurement Update

Sigma = Sigmahat-Sigmahat*C’*inv(C*Sigmahat*C’+V)*...

C*Sigmahat;

% Time Update

Sigmahat = A*Sigma*A’+W;

mse_rr = [mse_rr trace(Sigma)];

time = time+1;

if(time>N+1), break; end

% Sensor 3

C = C3;

% Measurement Update

Sigma = Sigmahat-Sigmahat*C’*inv(C*Sigmahat*C’+V)*...

C*Sigmahat;

% Time Update

Sigmahat = A*Sigma*A’+W;

mse_rr = [mse_rr trace(Sigma)];

time = time+1;

if(time>N+1), break; end

end

figure

plot(0:N,mse_rr);

ylabel(’mserr’)

xlabel(’time’)

print -deps mserr.eps

The following plot shows the evolution of TrΣrr(t|t) with time.

17

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

t

T
r
Σ

rr
(t
|t
)

The round-robbin sensor sequence is performing much worse than selecting the
best fixed sensor.

(c) Let Σg(t|t) be the estimation error covariance when using the proposed greedy sen-
sor selection heuristic. The following matlab code calculates and plots TrΣg(t|t),
for t = 0, . . . , 50:

% Greedy algorithm

Sigmahat = Sigma0;

mse_g=[];

policy = [];

for n = 1:N+1

% Measurement Updates

% First sensor

C = C1;

Sigma1 = Sigmahat-Sigmahat*C’*inv(C*Sigmahat*C’+V)*...

C*Sigmahat;

% Second sensor

C = C2;

Sigma2 = Sigmahat-Sigmahat*C’*inv(C*Sigmahat*C’+V)*...

C*Sigmahat;

% Third sensor

C = C3;

Sigma3 = Sigmahat-Sigmahat*C’*inv(C*Sigmahat*C’+V)*...

C*Sigmahat;

18

% Greedy sensor selection

mses = [trace(Sigma1) trace(Sigma2) trace(Sigma3)];

[min_mse,ind] = min(mses);

ind = ind(1);

policy = [policy ind];

mse_g = [mse_g min_mse];

switch ind

case 1

Sigma = Sigma1;

case 2

Sigma = Sigma2;

case 3

Sigma = Sigma3;

end

% Time update

Sigmahat = A*Sigma*A’+W;

end

figure

plot(0:N,mse_g);

ylabel(’mseg’)

xlabel(’time’)

print -deps mseg.eps

figure

stairs(0:N,policy)

ylabel(’policy’)

xlabel(’time’)

axis([0 N 0 3])

print -deps polg.eps

The following plot shows the evolution of TrΣg(t|t) with time.

19

0 5 10 15 20 25 30 35 40 45 50
2

2.5

3

3.5

4

4.5

5

5.5

6

t

T
r
Σ

g
(t
|t
)

The following plot shows the sensor sequence it used by the greedy heuristic.

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

t

i t

For this particular system, the greedy heuristic is better than using a single fixed
sensor with respect to the MSE, since

TrΣg(t|t) < TrΣ3(t|t),

for all t. It is interesting to note that the sensor sequence used by the heuristic
does not contain C3, which is the optimal fixed sensor.

20

