EE359 – Lecture 9 Outline

• Announcements:

- Tom's email OHs today 1-2pm
- New discussion section and OH times starting next week
 - Wednesdays 5-6pm Discussion session (Packard 361), Tom's OHs afterwards
- Project proposals due midnight 10/27; get early feedback
- Midterm Nov. 9, 6-8pm (pizza after), more details next week
 - Email me/TAs if you have a conflict
 - Open book/notes. Covers through diversity. No HW that week.
 - Over next week: propose dates for MT review, post practice MTs.

• Linear Modulation Review

- Linear Modulation Performance in AWGN
- Q-Function representations
- Probability of error in fading
- Outage probability
- Average P_s (P_b)

Review of Last Lecture

- Capacity in Flat-Fading: γ known at TX/RX
 - Optimal Adaptation: Power: $1/\gamma_0-1/\gamma$, Rate: Blog₂(γ/γ_0); Depend on p(γ) only through γ_0
 - Channel Inversion and Truncated Inversion
 - Received SNR constant; Capacity is $Blog_2(1+\sigma)$ above an outage level associated with truncation

• Capacity of ISI channels

- Divide wideband channel into narrowband flat-fading subchannels of bandwidth B approximately equal to B_c
 - Each subchannel has NB fading approx. independent from others
- Water-filling of power over freq; or time and freq.

Linear Digital Modulation

• Signal over *i*th symbol period:

 $s(t) = s_{i1}g(t)\cos(2\pi f_c t + \phi_0) - s_{i2}g(t)\sin(2\pi f_c t + \phi_0)$

- Pulse g(t) typically Nyquist, assumed square
- Signal constellation defined by (s_{i1},s_{i2}) pairs
 - M values for $(s_{i1}, s_{i2}) \Rightarrow \log_2 M$ bits per symbol
 - We focus on MPSK and MQAM
 - MPSK can be differentially encoded
- P_s depends on
 - Minimum distance d_{min} (depends on γ_s)
 - # of nearest neighbors $\alpha_{\rm M}$
 - Approximate expression:
 - Standard/alternate Q function

 $P_{s} \approx \alpha_{M} Q(\sqrt{\beta_{M} \gamma_{s}})$

Linear Modulation in Fading

- In fading γ_s and therefore P_s random
- Performance metrics:
 - Outage probability: $p(P_s > P_{target}) = p(\gamma < \gamma_{target})$
 - Average P_s , P_s :

$$\overline{P}_s = \int_0^\infty P_s(\gamma) p(\gamma) d\gamma$$

• Combined outage and average P_s

Outage Probability

- Probability that P_s is above target
- Equivalently, probability γ_s below target
- Used when $T_c >> T_s$

- Expected value of random variable P_s
- Used when $T_c \sim T_s$
- Error probability much higher than in AWGN alone
- Rarely obtain average error probability in closed form
 - Probability in AWGN is Q-function, double infinite integral

Main Points

- P_s approximation in AWGN: $P_s \approx \alpha_M Q (\sqrt{\beta_M \gamma_s})$
- - Alternate Q function useful in fading/diversity analysis
- In fading P_s is a random variable, characterized by average value, outage, or combined outage/average
- Fading greatly increases average P_s or required power for a given target P_s with some outage
 - Outage probability based on target SNR in AWGN.
- Need to combat flat fading or waste lots of power