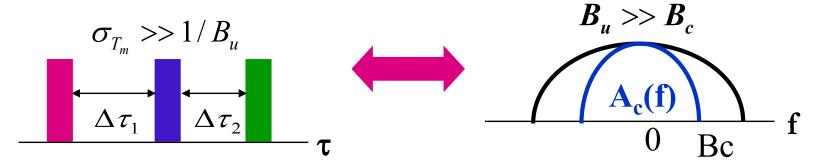
EE359 – Lecture 7 Outline

• Announcements:

- Schedule changes this week
 - 10/18 Discussion 5-6pm Pack 364, OHs 4:00PM 5:00PM (3rd Floor Packard) and just after Discussion.
 - Makeup class Friday 10/20 (no lecture next Tues 10/24). Makeup class will be 10/20 at 10:30AM at Thornton 102 (with donuts)
 - Tom's OHs 10/20 will be 9:30-10:20 (3rd Floor Packard)
 - Email OHs 10/20 from 1-2pm
- Project proposals due 10/28; I can provide early feedback
- MT Nov. 7, 8, or 9 from 6-8pm (pizza after), poll today; details soon
- Shannon Capacity
- Capacity of Flat-Fading Channels
 - Fading Statistics Known
 - Fading Known at RX
 - Fading Known at TX and RX: water-filling
 - Channel Inversion
 - Truncated Channel Inversion

Review of Last Lecture

- Wideband channels: $B_u > 1/\sigma_{T_m}$
- Scattering Function: $s(\tau,\rho) = F_{\Delta t}[A_c(\tau,\Delta t)]$
 - Used to characterize c(τ,t) statistically
- Multipath Intensity Profile:
- Determines average (μ_{T_m}) and rms (σ_{T_m}) delay spread
 - Coherence bandwidth $B_c = 1/\sigma_{Tm}$

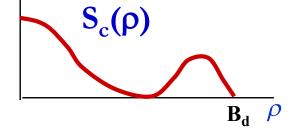


Review Continued

Scattering Function: $s(\tau,\rho) = \mathcal{F}_{\Delta t}[A_c(\tau,\Delta t)]$

• Doppler Power Spectrum: $S_c(\rho) = \mathcal{F}_{\Delta t} [A_c(\Delta f = 0, \Delta t) \triangleq Ac(\Delta t)]$

$$A_c(\Delta f, \Delta t) = \mathcal{F}_{\tau}[A_c(\tau, \Delta t)]$$



- Power of multipath at given Doppler
- Doppler spread B_d : Max. doppler for which $S_c(\rho) > 0$.
- Coherence time $T_c = 1/B_d$: Max time over which $A_c(\Delta t) > 0$
 - $A_c(\Delta t)=0$ implies signals separated in time by Δt uncorrelated at RX
- Why do we look at Doppler w.r.t. $A_c(\Delta f=0,\Delta t)$?
 - Captures Doppler associated with a narrowband signal
 - Autocorrelation over a narrow range of frequencies
 - Fully captures time-variations, multipath angles of arrival

Shannon Capacity

- Defined as channel's maximum mutual information
- Shannon proved that capacity is the maximum error-free data rate a channel can support.
- Theoretical limit (not achievable)
- Channel characteristic
 - Not dependent on design techniques
- In AWGN, $C = B \log_2(1+\gamma)$ bps
 - B is the signal bandwidth
 - $\gamma = P_r/(N_0 B)$ is the received signal to noise power ratio

Capacity of Flat-Fading Channels

- Capacity defines theoretical rate limit
 - Maximum error free rate a channel can support
- Depends on what is known about channel
- Fading Statistics Known
 - Hard to find capacity
- Fading Known at Receiver Only

$$C = \int_{0}^{\infty} B \log_{2}(1+\gamma)p(\gamma)d\gamma \le B \log_{2}(1+\bar{\gamma})$$

- Fading known at TX and RX
 - Multiplex optimal strategy over each channel state

Capacity with Fading Known at Transmitter and Receiver

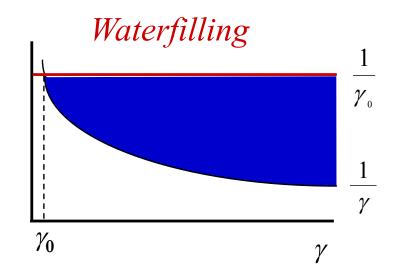
- For fixed transmit power, same as with only receiver knowledge of fading
- Transmit power $P(\gamma)$ can also be adapted
- Leads to optimization problem

$$C = \max_{P(\gamma) : E[P(\gamma)] = \overline{P}} \int_{0}^{\infty} B \log_{2} \left(1 + \frac{\gamma P(\gamma)}{\overline{P}} \right) p(\gamma) d\gamma$$

Optimal Adaptive Scheme

Power Adaptation

$$\frac{P(\gamma)}{\overline{P}} = \begin{cases} \frac{1}{\gamma_0} - \frac{1}{\gamma} & \gamma \ge \gamma_0 \\ 0 & \text{else} \end{cases}$$



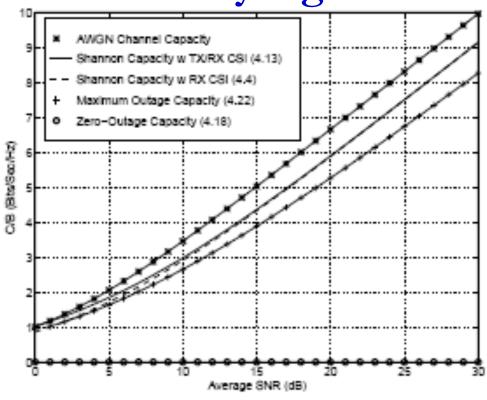
Capacity

$$\frac{R}{B} = \int_{\gamma_0}^{\infty} \log_2\left(\frac{\gamma}{\gamma_0}\right) p(\gamma) d\gamma.$$

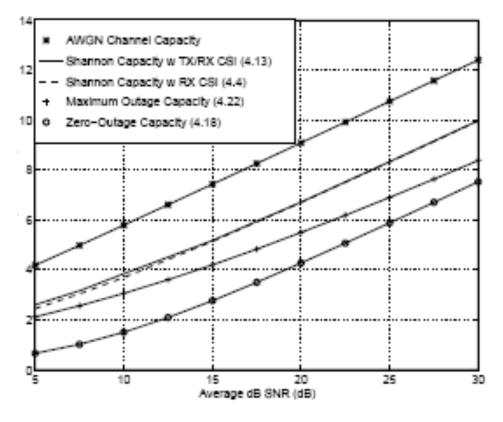
Channel Inversion

- Fading inverted to maintain constant SNR
- Simplifies design (fixed rate)
- Greatly reduces capacity
 - Capacity is zero in Rayleigh fading
- Truncated inversion
 - Invert channel above cutoff fade depth
 - Constant SNR (fixed rate) above cutoff
 - Cutoff greatly increases capacity
 - Close to optimal

Capacity in Flat-Fading



Log-Normal



Main Points

- Fundamental channel capacity defines maximum data rate that can be supported on a channel
- Capacity in fading depends what is known at TX/RX
- Capacity with RX CSI is average of AWGN capacity
- Capacity with TX/RX knowledge requires optimal adaptation based on current channel state
- Almost same capacity as with RX knowledge only
- Channel inversion has poor performance, but significantly improved with truncation