EE359 – Lecture 18 Outline

Announcements

- HW due Fri; last HW posted, due Sunday 12/10 at 4 pm (no late HWs)
- Lecture next Thu 12/7 10-11:50 (course review+advanced topics)
- Final info (coverage, format, extra OHs, etc) given in 12/5 lecture
- Final exam 12/13, 12:15pm-3:15pm in Thornton 102
- Final projects must be posted 12/9 at midnight.

Spread Spectrum

- Direct sequence (DSSS)
- ISI and Interference Rejection of DSSS
- RAKE Receiver

Multiuser Systems

- Multiple access techniques
- Random access techniques

Review of Last Lecture

MCM, Overlapping Subcarriers and FFT Implementation (OFDM)

- MCM splits high rate data stream into lower rate flat-fading substreams
- Overlapping subcarriers reduces BW by factor of 2
- Modulate symbols with IFFT at TX, Reverse structure (with FFT) in RX
- Cyclic prefix makes linear convolution of channel circular, so no interference between FFT blocks in RX processing

Review Continued OFDM Design Issues

- Timing/frequency offset:
 - Impacts subcarrier orthogonality; self-interference
- Peak-to-Average Power Ratio (PAPR)
 - Adding subcarrier signals creates large signal peaks
 - Solve with clipping or PAPR-optimized coding
- Mitigation for fading across subcarriers
 - Precoding (fading inversion): Used in DSL as there is minimal deep fades, not used in wireless systems
 - Adaptive modulation: data rate (and power) adapted to subcarrier SNR. Used in LTE and 802.11a-g-n-ac
 - Coding across subcarriers: bits are encoded into a block code of length N for N subcarriers. Each coded symbol is sent on a different subcarrier.

Intro. to Spread Spectrum

- Modulation that increases signal bandwidth
 - Spreads modulated signal over wider BW B~1/ T_s than needed for transmission (R=log₂(M)/ T_s)
 - Mitigates or coherently combines ISI
 - Mitigates narrowband interference/jamming
 - Hides signal below noise (DSSS) or makes it hard to track (FH)
 - Also used as a multiple access technique
- Two types
 - Frequency Hopping:
 - Narrowband signal hopped over wide bandwidth
 - Direction Sequence:
 - Modulated signal multiplied by faster chip sequence

Direct Sequence Spread Spectrum

• Bit sequence modulated by chip sequence

- Spreads bandwidth by large factor (G)
- Despread by multiplying by $s_c(t)$ again $(s_c^2(t)=1)$
- Mitigates ISI and narrowband interference

ISI and Interference Rejection

Narrowband Interference Rejection (1/K)

• Multipath Rejection (Autocorrelation $\rho(\tau)$)

Can coherently combine all multipath components via a RAKE receiver

RAKE Receiver

- Multibranch receiver
 - Branches synchronized to different MP components

- These components can be coherently combined
 - Use SC, MRC, or EGC

Multiuser Channels: Uplink and Downlink

Uplink (Multiple Access

Channel or MAC):

Many Transmitters

to One Receiver.

Downlink (Broadcast

Channel or BC):

One Transmitter

to Many Receivers.

Uplink and Downlink typically duplexed in time or frequency

Full-duplex radios are being considered for 5G systems

Bandwidth Sharing in Multiple Access

Channels assigned by central controller

Frequency Division

OFDMA

Time Division

- Code Division
 - Code cross-correlation dictates interference
 - Multiuser Detection
- Space Division (SDMA)
- Hybrid Schemes

Random vs. Multiple Access

- In multiple access, channels are assigned by a centralized controller
 - Requires a central controller and control channel
 - Inefficient for short and/or infrequent data transmissions
- In random access, users access channel randomly when they have data to send
 - A simple random access scheme will be explored in homework
- ALOHA Schemes (not on exams/HW)
 - Data is packetized.
 - Packets occupy a given time interval

- Pure ALOHA
 - send packet whenever data is available
 - a collision occurs for any partial overlap of packets (nonorthogonal slots)
 - Packets received in error are retransmitted after random delay interval (avoids subsequent collisions).

- Slotted ALOHA
 - same as ALOHA but with packet slotting
 - packets sent during predefined timeslots
 - A collision occurs when packets overlap,
 but there is no partial overlap of packets
 - Packets received in error are retransmitted after random delay interval.

Main Points

- Spread spectrum increases signal bandwidth above that required for information transmission
- Benefits of spread spectrum:
 - ISI/narrowband interference rejection by spreading gain
 - Also used as a multiuser/multiple access technique
- Multiple access: users can share the same spectrum via time/frequency/code/space division
- Random access more efficient than multiple access for short/infrequent data transmission