EE359 – Lecture 17 Outline

Announcements

- Thu lecture move to Fri, 10:30-11:50, here; Tom's Fri OH 9:30-10:30
- HW due Friday
- Last HW will be posted Thurs, due Fri of dead week (no late HWs)
- Last lecture 12/7 will be 10:30-11:30 (course review) and 11:30-12:30 (advanced topics; bonus lecture).
- Multicarrier Modulation
- Overlapping subcarriers in MCM
- FFT implementation of MCM (OFDM)
- Implementation Challenges in OFDM
- Fading across Subcarriers
- MIMO-OFDM

Review of Last Lecture

- MIMO RX Design (see supplemental handout):
 - Optimal Receiver is ML: finds input symbol most likely to have resulted in received vector, exponentially complex in M_t
 - Linear Receivers: First performs linear equalization: $\tilde{x} = Ay$ then quantizes \tilde{x} to nearest constellation point $x \in X^{M_t}$
 - Zero-Forcing (A = H[†], the Moore-Penrose pseudo inverse of H): (if H invertible, equals inverse, else H[†] = (H^HH)⁻¹H^H); forces offdiagonal terms to zero (x̃_i = x_i + ñ_i; ñ = H[†]n, enhances noise)
 - Minimum Mean Square Error (A = H^H(HH^H + λI)⁻¹): λ ∝1/SNR Balances zero forcing against noise enhancement
- Sphere Decoder: Uses QR decomposition of H
 - Considers possibilities within sphere of transformed received symbol.

Sphere Decoding

• If minimum distance symbol is within sphere, optimal, otherwise null is returned

 $\hat{x} = \arg \min |Q^H y - Rx|^2$

 $x:|Q^{H}y-Rx| < r \qquad Q^{H}y=Rx+Q^{H}n$

 $\hat{x} = \arg\min|y - Hx|^2$ Hx + n

Multicarrier Modulation

- Can mitigate ISI with equalization (not commonly used or covered), multicarrier modulation, or spread spectrum
- Multicarrier Modulation: breaks data into N substreams (B/N<B_c); Substreams modulated onto separate carriers
 - Substream passband BW is B/N for B total BW
 - B/N<B_c implies flat fading on each subcarrier (no ISI)

Overlapping Substreams

- Can have completely separate subchannels
 - Required passband bandwidth is B.
- MCM with overlapping substreams
 - Substreams (symbol time T_N) separated in RX
 - Minimum substream separation is $1/T_N$ for rectangular pulses
 - Total required bandwidth is B/2

FFT Implementation of MCM (OFDM)

- Use IFFT at TX to modulate symbols on each subcarrier
- Cyclic prefix makes linear convolution of channel circular, so no interference between FFT blocks in RX processing
- Reverse structure (with FFT) at receiver

OFDM Design Issues

- Timing/frequency offset:
 - Impacts subcarrier orthogonality; self-interference
- Peak-to-Average Power Ratio (PAPR)
 - Adding subcarrier signals creates large signal peaks
 - Solve with clipping or PAPR-optimized coding
- Different fading across subcarriers
 - Mitigate by precoding (fading inversion), adaptive modulation over frequency, and coding across subcarriers

• MIMO-OFDM

- Apply OFDM across each spatial dimension
- Can adapt across space, time, and frequency
- MIMO-OFDM represented by a matrix, extends matrix representation of OFDM alone (considered in HW)

Main Points

- MCM splits channel into NB flat fading subchannels
 - Overlapping subcarriers in OFDM reduces BW by 2x
- MCM implemented with IFFTs/FFT (OFDM)
 - Block size depends on data rate relative to delay spread
- OFDM challenges: timing/frequency offset, PAPR
- Subcarrier fading degrades OFDM performance
 - Compensate through precoding (channel inversion), coding across subcarriers, or adaptation
- OFDM naturally combined with MIMO
 - Orthogonal in space/freq; extended matrix representation
 - 4G Cellular and 802.11n/ac/ax all use OFDM+MIMO