EE359 - Lecture 17 Outline

- Announcements
- Thu lecture move to Fri, 10:30-11:50, here; Tom's Fri OH 9:30-10:30
- HW due Friday
- Last HW will be posted Thurs, due Fri of dead week (no late HWs)
- Last lecture 12/7 will be 10:30-11:30 (course review) and 11:30-12:30 (advanced topics; bonus lecture).
- Multicarrier Modulation
- Overlapping subcarriers in MCM
- FFT implementation of MCM (OFDM)
- Implementation Challenges in OFDM
- Fading across Subcarriers
- MIMO-OFDM

Review of Last Lecture

- MIMO RX Design (see supplemental handout):
- Optimal Receiver is ML: finds input symbol most likely to have resulted in received vector, exponentially complex in \mathbf{M}_{t}
- Linear Receivers: First performs linear equalization: $\tilde{x}=A y$ then quantizes \tilde{x} to nearest constellation point $x \in X^{M_{t}}$
- Zero-Forcing ($A=\mathbf{H}^{\dagger}$, the Moore-Penrose pseudo inverse of H): (if \mathbf{H} invertible, equals inverse, else $\mathbf{H}^{\dagger}=\left(\mathbf{H}^{H} \mathbf{H}\right)^{-1} \mathbf{H}^{H}$); forces offdiagonal terms to zero ($\widetilde{x}_{i}=x_{i}+\widetilde{n}_{i} ; \widetilde{n}=\mathbf{H}^{\dagger} n$, enhances noise)
- Minimum Mean Square Error $\left(A=\mathbf{H}^{H}\left(\mathbf{H H}^{H}+\lambda \mathbf{I}\right)^{-1}\right): \lambda \propto 1 /$ SNR Balances zero forcing against noise enhancement
- Sphere Decoder: Uses QR decomposition of H
- Considers possibilities within sphere of transformed received symbol.
- If minimum distance symbol is within sphere, optimal, otherwise null is returned
$\hat{x}=\arg \min |y-H x|^{2}$

$$
H x+n
$$

ML Decoding

Sphere Decoding $\%$

$$
\begin{aligned}
\hat{x}=\underset{x:\left|Q^{H} y-R x\right|<r}{\arg \min }\left|Q^{H} y-R x\right|^{2} \\
Q^{H} y=R x+Q^{H} n
\end{aligned}
$$

Multicarrier Modulation

- Can mitigate ISI with equalization (not commonly used or covered), multicarrier modulation, or spread spectrum
- Multicarrier Modulation: breaks data into \mathbf{N} substreams ($\mathrm{B} / \mathrm{N}<\mathrm{B}_{\mathrm{c}}$); Substreams modulated onto separate carriers
- Substream passband BW is B/N for B total BW
- $\mathbf{B} / \mathbf{N}<\mathbf{B}_{\mathrm{c}}$ implies flat fading on each subcarrier (no ISI)

Overlapping Substreams

- Can have completely separate subchannels
- Required passband bandwidth is B.
- MCM with overlapping substreams
- Substreams (symbol time T_{N}) separated in RX
- Minimum substream separation is $1 / \mathrm{T}_{\mathrm{N}}$ for rectangular pulses
- Total required bandwidth is $\mathrm{B} / 2$

FFT Implementation of MCM (OFDM)

- Use IFFT at TX to modulate symbols on each subcarrier
- Cyclic prefix makes linear convolution of channel circular, so no interference between FFT blocks in RX processing
- Reverse structure (with FFT) at receiver

OFDM Design Issues

- Timing/frequency offset:
- Impacts subcarrier orthogonality; self-interference
- Peak-to-Average Power Ratio (PAPR)
- Adding subcarrier signals creates large signal peaks
- Solve with clipping or PAPR-optimized coding
- Different fading across subcarriers
- Mitigate by precoding (fading inversion), adaptive modulation over frequency, and coding across subcarriers
- MIMO-OFDM
- Apply OFDM across each spatial dimension
- Can adapt across space, time, and frequency
- MIMO-OFDM represented by a matrix, extends matrix representation of OFDM alone (considered in HW)

Main Points

- MCM splits channel into NB flat fading subchannels
- Overlapping subcarriers in OFDM reduces BW by 2x
- MCM implemented with IFFTs/FFT (OFDM)
- Block size depends on data rate relative to delay spread
- OFDM challenges: timing/frequency offset, PAPR
- Subcarrier fading degrades OFDM performance
- Compensate through precoding (channel inversion), coding across subcarriers, or adaptation
- OFDM naturally combined with MIMO
- Orthogonal in space/freq; extended matrix representation
- 4G Cellular and 802.11n/ac/ax all use OFDM+MIMO

