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MIMO Systems: Channel Capacity, Beamforming,
Diversity-Multiplexing Tradeoff, and RX Design

Lecture Outline

• MIMO Channel Capacity: Fading and Massive MIMO

• Beamforming

• MIMO Diversity/Multiplexing Tradeoffs

• MIMO RX Design

1. MIMO Channel Capacity: fading channels and massive MIMO

• In fading, capacity with both transmitter and receiver knowledge is the average of
the capacity for the static channel, with power allocated either by an instantaneous
or average power constraint. Under the instantaneous constraint power is optimally

allocated over the spatial dimension only. Under the average constraint it is allocated
over both space and time.

• In fading, if the channel is unknown at transmitter, uniform power allocation is optimal,

but this leads to an outage probability since the transmitter doesn’t know what rate
to transmit at:
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• Without TX CSI, at high SNR and in the limit of large antenna arrays, random matrix

theory dictates that the singular values of the channel matrix converge to the same
constant. Hence, the capacity of each spatial dimension is the same, and the total

system capacity is C = min(Mt, Mr)B log(1 + ρ). So capacity grows linearly with the
size of the antenna arrays.

2. MIMO Systems: Beamforming

• Beamforming sends the same symbol over each transmit antenna with a different scale
factor.

• At the receiver, all received signals are coherently combined using a different scale

factor.

• This produces a transmit/receiver diversity system, whose SNR can be maximized by
optimizing the scale factors (MRC).

• Beamforming leads to a much higher SNR than on the individual channels in the

parallel channel decomposition.

• Thus, there is a design tradeoff in MIMO systems between capacity and diversity.



3. Diversity versus Multiplexing in MIMO Systems

• Can exchange data rate for probability of error.

• Define rate scale factor r = R/ log(SNR). Define diversity gain d = log)Pe)/ log(SNR)/.

• Can show (Zheng/Tse’02) that in high SNR regime, the optimal tradeoff is d∗(r) =

(Mt − r)(Mr − r)..

• The optimal operating point on this traedeoff curve depends on the application.

4. MIMO Receiver Design (see supplemental notes)

• Optimal MIMO receiver is maximum-likelihood (ML) receiver. Finds input vector x

that minimizes |y − Hx|2
F

for | · |F the Frobenius (matrix) norm.

• This receiver is exponentially complex in the constellation size and number of trans-
mitted data streams.

• Can reduce complexity through linear processing of input vector Ax.

• Zero-forcing receiver forces all interference from other symbols to zero. This can result

in significant noise enhancement.

• MMSE receiver: trades off cancellation of interference from other symbols for noise
enhancement. Reduces to zero forcing in the absence of noise.

• Sphere decoder: uses upper triangular decomposition of H to reduce complexity. Finds

constellation point within a sphere of a given radius. Provides near-ML performance
with near-linear complexity.

Main Points

• With TX and RX CSI, capacity of MIMO channel uses waterfilling in space or space/time

- leads to min(Mt, Mr) capacity gain.

• Without transmitter CSI, use outage as capacity metric.

• Capacity of massive MIMO at high SNR is min(Mt, Mr) capacity gain.

• MIMO introduces diversity/multiplexing tradeoff: Optimal use of antennas depends on

application.

• MIMO RX design trades complexity for performance. ML detector is optimal but expo-

nentially complex. Linear decoders enhance noise. Sphere decoders allow performance vs.
complexity tradeoff via radius; most common technique in practice.


