EE359 – Lecture 14 Outline

• Announcements:

- MT tonight, 6-8pm here
- HW posted today, due next Friday
- Introduction to MIMO Communications
- MIMO Channel Decomposition
- MIMO Channel Capacity
- MIMO Beamforming

Review of Last Lecture

- Introduction to adaptive modulation
 - Vary different parameters of modulation relative to fading
- Variable-rate variable-power MQAM
 - Maximize average throughput by changing rate and power
 - Optimal power adaptation is water-filling

$$\frac{P(\gamma)}{\overline{P}} = \begin{cases} \frac{1}{\gamma_0} - \frac{1}{\gamma K} & \gamma \ge \frac{\gamma_0}{K} = \gamma_K \\ 0 & \text{else} \end{cases}$$

• Optimal rate adaptation:

$$\frac{R}{B} = \int_{\gamma_{K}}^{\infty} \log_{2}\left(\frac{\gamma}{\gamma_{K}}\right) p(\gamma) d\gamma.$$

Equals capacity with effective power loss K=-1.5/ln(5BER).

Review continued Constellation Restriction

- Restrict $M_D(\gamma)$ to $\{M_0=0,...,M_N\}$.
- Let $M(\gamma) = \gamma / \gamma_K^*$, where γ_K^* is optimized for max rate
- Set $M_D(\gamma)$ to $\max_j M_j: M_j \le M(\gamma)$ (conservative)
- Region boundaries are $\gamma_j = M_j \gamma_K^*$, j = 0,...,N

Review continued

Power Adaptation and Average Rate

• Power adaptation:

• Fixed BER within each region

•
$$E_s/N_0 = (M_j - 1)/K$$

- Channel inversion within a region
- Requires power increase when increasing $M(\gamma)$

$$\frac{P_{j}(\gamma)}{P} = \begin{cases} (M_{j}-1)/(\gamma K) & \gamma_{j} \leq \gamma < \gamma_{j+1}, j > 0\\ 0 & \gamma < \gamma_{1} \end{cases}$$

• Average Rate

$$\frac{R}{B} = \sum_{j=1}^{N} \log_2 M_j p(\gamma_j \le \gamma < \gamma_{j+1})$$

- Practical Considerations:
 - Update rate/estimation error and delay

Efficiency in Rayleigh Fading

Multiple Input Multiple Output (MIMO)Systems

• MIMO systems have multiple transmit and receiver antennas (M_t at TX, M_r at RX)

- Input described by vector x of dimension M_t
- Output described by vector y of dimension M_r
- Channel described by $M_r x M_t$ matrix
- Design and capacity analysis depends on what is known about channel *H* at TX and RX
 - If H unknown at TX, requires vector modulation/demod

MIMO Decomposition

 Decompose channel through transmit precoding (x=Vx) and receiver shaping (y=U^Hy)

- Leads to $R_H \le \min(M_t, M_r)$ independent channels with gain σ_i (ith singular value of H) and AWGN
- Independent channels lead to simple capacity analysis and modulation/demodulation design

Capacity of MIMO Systems

- Depends on what is known at TX and RX and if channel is static or fading
- For static channels
 - With perfect CSI at TX and RX, power water-filling over space is optimal
 - Without transmitter channel knowledge, capacity metric is based on an outage probability
 - P_{out} is the probability that the channel capacity given the channel realization is below the transmission rate.
 - For large arrays, random channel gains converge to static values, $C = min(M_t, M_r) Blog(1+\rho); \rho$ is SNR

MIMO Fading Channel Capacity

- If channel H known, waterfill over space (fixed power at each time instant) or space-time
- Without transmitter channel knowledge, capacity is based on an outage probability
 - P_{out} is the probability that the channel capacity given the channel realization is below the transmission rate.

Beamforming

Scalar codes with transmit precoding

- Transforms system into a SISO system with diversity.
 - •Array and diversity gain
 - •Greatly simplifies encoding and decoding.
 - •Channel indicates the best direction to beamform
 - •Need "sufficient" knowledge for optimality of beamforming

Main Points

- MIMO systems exploit multiple antennas at both TX and RX for capacity and/or diversity gain
- With TX and RX channel knowledge, channel decomposes into independent channels
- Capacity of MIMO systems
 - Static channel with TX/RX CSI: sum of capacity on each spatial dimension
 - Static channel without TX CSI: capacity metric is outage. At high SNR/large arrays, capacity increases linearly with the number of TX/RX antennas
 - Fading channel with TX/RX CSI: water-fill power over space or space-time to achieve capacity
- Beamforming transforms MIMO system into a SISO system with TX and RX diversity.
 - Beamform along direction of maximum singular value