EE359 – Lecture 12 Outline

• Announcements

- Midterm announcements
- No HW next week (practice MTs)
- HW5 posted, due Monday 4pm (no late HWs)
- Transmit Diversity
- Midterm Review
- Introduction to adaptive modulation
- Variable-rate variable-power MQAM
- Optimal power and rate adaptation

Midterm Announcements

- Midterm: Thursday (11/9), 6-8 pm in (room TBD)
 - Food will be served after the exam!
- Review sessions
 - My midterm review will be during tomorrow's makeup lecture
 - TA review: Monday 11/6 from 4-6 pm in 364 Packard

• Midterm logistics:

- Open book/notes; Bring textbook/calculators (have extras; adv. notice reqd)
- Covers Chapters 1-7 (sections covered in lecture and/or HW)

• Special OHs next week:

- Me: Wed 11/8: 9-11am, Thu 11/9: 12-2pm all in 371 Packard
- Milind: Tues 11/7, 4-6pm, 3rd Floor Packard Kitchen Area + email
- Tom: Wed 11/8: 5-7pm, Thu 11/9 2-4pm, 3rd Floor Packard Kitchen Area + email

• No HW next week

• Midterms from past 3 MTs posted:

- 10 bonus points for "taking" a practice exam
- Solutions for all exams given when you turn in practice exam

Review of Last Lecture

- Array Structure of a Diversity Combiner
- Performance metrics:
 - Outage probability and average probability of error
 - Array and Diversity gain
- Combining Techniques
 - Selection Combining (SC): Path with highest gain used
 - Maximal Ratio Combining (MRC): Paths cophased and summed with optimal weights to maximize SNR
- SC Performance Analysis
 - Combiner SNR is the maximum of the branch SNRs.
 - CDF easy to obtain ($\Pi_i p(\gamma_i < \gamma_{thr})$), pdf found by differentiating.
 - P_{out} obtained from CDF. Average P_s typically found numerically
 - Diminishing returns with number of antennas.
 - Can get up to about 20 dB of gain.

Review Continued MRC Performance

- With MRC, $\gamma_{\Sigma} = \Sigma \gamma_i$ for branch SNRs γ_i
 - Optimal technique to maximize output SNR
 - Yields 20-40 dB performance gains
 - Distribution of γ_{Σ} hard to obtain
- Standard average BER calculation

$$\overline{P}_{S} = \int P_{S}(\gamma_{\Sigma}) p(\gamma_{\Sigma}) d\gamma_{\Sigma} = \int \int \dots \int P_{S}(\gamma_{\Sigma}) p(\gamma_{1}) * p(\gamma_{2}) * \dots * p(\gamma_{M}) d\gamma_{1} d\gamma_{2} \dots d\gamma_{M}$$

- Hard to obtain in closed form
- Integral often diverges
- MGF Approach

$$\overline{P}_s = \frac{\alpha_M}{\pi} \int_0^{\pi/2} \prod_{i=1}^M \mathcal{M}_{\gamma_i} \left[\frac{-.5\beta_M}{\sin^2 \phi} \right] d\phi_i$$

Cover in HW and ppt, not lecture

Transmit Diversity

- With channel knowledge, similar to receiver diversity, same array/diversity gain
- <u>Without</u> channel knowledge, can obtain diversity gain through Alamouti scheme:
 - 2 TX antenna space-time block code (STBC)
 - Works over 2 consecutive symbols
 - Achieves full diversity gain, no array gain
 - Part of various wireless standards, including LTE
 - Hard to generalize to more than 2 TX antennas
 - Alamouti code not covered in lecture/exams

Midterm Review

- Overview of Wireless Systems
- Signal Propagation and Channel Models
- Modulation and Performance Metrics
- Impact of Channel on Performance
- Fundamental Capacity Limits
- Diversity Techniques
- Main Points

Adaptive Modulation

- Change modulation relative to fading
- Parameters to adapt:
 - Constellation size
 - Transmit power
 - Instantaneous BER
 - Symbol time
 - Coding rate/scheme

Only 1-2 degrees of freedom needed for good performance

- Optimization criterion:
 - Maximize throughput
 - Minimize average power
 - Minimize average BER

Variable-Rate Variable-Power MQAM

Goal: Optimize $P(\gamma)$ and $M(\gamma)$ to maximize $R=Elog[M(\gamma)]$

Optimization Formulation

• Adaptive MQAM: Rate for fixed BER

$$M(\gamma) = 1 + \frac{1.5\gamma}{-\ln(5BER)} \frac{P(\gamma)}{\overline{P}} = 1 + K\gamma \frac{P(\gamma)}{\overline{P}}$$

• Rate and Power Optimization

$$\max_{P(\gamma)} E \log_2[M(\gamma)] = \max_{P(\gamma)} E \log_2\left[1 + K\gamma \frac{P(\gamma)}{\overline{P}}\right]$$

Same maximization as for capacity, except for K=-1.5/In(5BER).

Optimal Adaptive Scheme

$$\frac{P(\gamma)}{\overline{P}} = \begin{cases} \frac{1}{\gamma_0} - \frac{1}{\gamma K} & \gamma \ge \frac{\gamma_0}{K} = \gamma_K \\ 0 & \text{else} \end{cases}$$

• Spectral Efficiency

$$\frac{R}{B} = \int_{\gamma_{K}}^{\infty} \log_{2}\left(\frac{\gamma}{\gamma_{K}}\right) p(\gamma) d\gamma.$$

Equals capacity with effective power loss K=-1.5/ln(5BER).

Spectral Efficiency

Can reduce gap by superimposing a trellis code

Main Points

- Transmit diversity with channel state information at the TX is same as RX diversity
 - Can obtain diversity gain even without channel information at transmitter via space-time block codes.
- Adaptive modulation leverages fast fading to improve performance (throughput, BER, etc.)
- Adaptive MQAM uses capacity-achieving power and rate adaptation, with power penalty K.
 - Comes within 5-6 dB of capacity