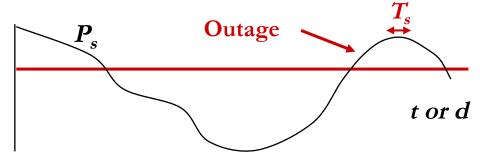
#### EE359 – Lecture 10 Outline

#### • Announcements:

- Project proposals due tomorrow midnight (post, email link)
- Midterm will be Nov. 9 6-8pm
  - No HW that week, may extend next week's HW deadline
  - Exam open book/notes, covers thru Chp. 7.
  - Midterm review date/timeTBD. Brief in-class summary as well
  - SCPD students can take exam on campus or remotely
  - More MT announcements next week (practice MTs)
- MGF approach for average P<sub>s</sub>
- Combined average and outage P<sub>s</sub>
- Doppler and delay spread effect on error probability
- Introduction to diversity
- Combining techniques

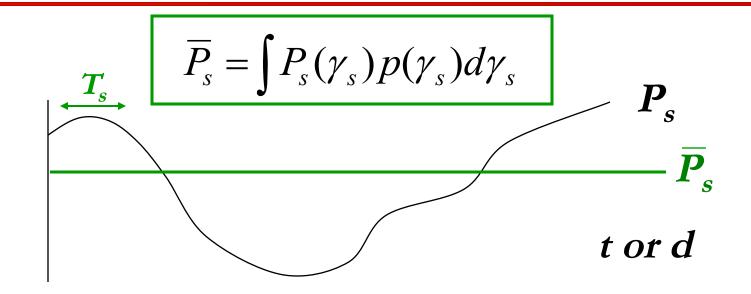
#### Review of Last Lecture


- Focus on linear modulation
- $P_s$  approximation in AWGN:
- $P_s \approx \alpha_M Q\left(\sqrt{\beta_M \gamma_s}\right)$
- Nearest neighbor error dominates

$$Q\left(\sqrt{\frac{d_{s_i s_j}^2}{N_0 B}}\right) >> Q\left(\sqrt{\frac{d^2}{N_0 B}}\right) \quad for \ d_{s_i s_j} < d$$
Correction

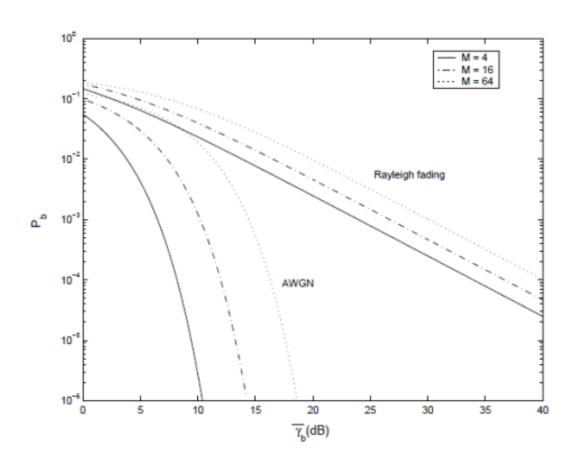
board lecture

- Probability of error in fading is random
  - Characterized by outage, average Ps, combination
- Outage probability


 $P_{s(target)}$ 



Used when  $T_c >> T_s$ 


- Probability  $P_s$  is above target; Probability  $\gamma_s$  below target
- Fading severely degrades performance

# Review Continued: Average P<sub>s</sub>



- Expected value of random variable  $P_s$
- Used when  $T_c \sim T_s$
- Error probability much higher than in AWGN alone
- Rarely obtain average error probability in closed form
  - Probability in AWGN is Q-function, double infinite integral

# Average Probability of Error

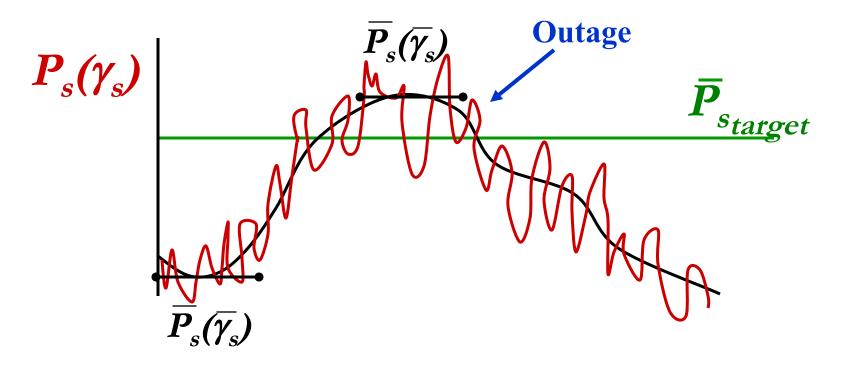


Fading severely degrades performance

#### Alternate Q Function Representation

Chap. 6.2 & 6.3.3 Cover in HW, not lecture

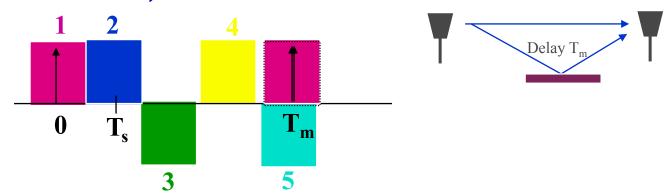
Traditional Q function representation


$$Q(z) = p(x > z) = \int_{z}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^{2}/2} dx, \quad x \sim N(0,1)$$

- Infinite integrand, argument in integral limits
- Average P<sub>e</sub> entails infinite integral over Q(z)
- Craig's representation:  $Q(z) = \frac{1}{\pi} \int_0^{\pi/2} e^{-z^2/(\sin^2 \varphi)} d\varphi$ 
  - Very useful in fading and diversity analysis

$$\overline{P}_{s} = \frac{\alpha}{\pi} \int_{0}^{\pi} M_{\gamma_{s}} \left( \frac{-g}{\sin^{2} x} \right) dx \qquad M_{\gamma_{s}} \text{ is MGF of fading distribution}$$

$$\gamma_{s}, \text{ g depends on modulation}$$


## Combined outage and average $P_s$



- Used in combined shadowing and flat-fading
- $\bullet$   $\overline{P}_s$  varies slowly, locally determined by flat fading
- Declare outage when P<sub>s</sub> above target value

## Delay Spread (ISI) Effects

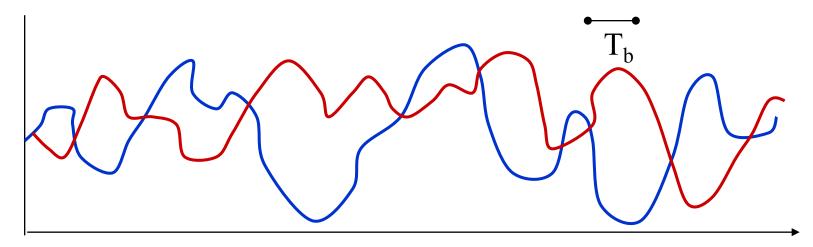
• Delay spread exceeding a symbol time causes ISI (self interference).



- ISI leads to irreducible error floor:  $\overline{P}_{b,floor} \approx (\sigma_{T_m}/T_s)^2$ 
  - Increasing signal power increases ISI power
- ISI imposes data rate constraint: T<sub>s</sub>>>T<sub>m</sub> (R<sub>s</sub><<B<sub>c</sub>)

$$R \leq \log_2(M) \times \sqrt{\overline{P}_{b,floor}}/\sigma_{T_m}^2$$

### Doppler Effects


- High doppler causes channel phase to decorrelate between symbols
- Leads to an irreducible error floor for differential modulation
  - Increasing power does not reduce error
- Error floor depends on f<sub>D</sub>T<sub>b</sub> as

$$P_{floor} = \frac{1 - J_0(2\pi f_D T_b)}{2} \approx .5(\pi f_D T_b)^2$$

### Introduction to Diversity

#### • Basic Idea

- Send same bits over independent fading paths
  - Independent fading paths obtained by time, space, frequency, or polarization diversity
- Combine paths to mitigate fading effects



# Combining Techniques

- Selection Combining
  - Fading path with highest gain used
- Maximal Ratio Combining
  - All paths cophased and summed with optimal weighting to maximize combiner output SNR
- Equal Gain Combining
  - All paths cophased and summed with equal weighting
- Array/Diversity gain
  - Array gain is from noise averaging (AWGN and fading)
  - Diversity gain is change in BER slope (fading)

Our focus

#### **Main Points**

- Fading greatly increases average  $P_s$  or required power for a given target  $P_s$  with some outage
- Alternate Q function approach simplifies  $P_s$  calculation, especially its average value in fading
  - Average  $P_s$  becomes a Laplace transform.
- In fast/slow fading, outage due to shadowing, probability of error averaged over fast fading pdf
- Need to combat flat fading or waste lots of power
  - Adaptive modulation and diversity are main techniques to combat flat fading: adapt to fading or remove it
- Delay spread causes irreducible error floor at high data rates
  - Doppler causes irreducible error floor at low data rates
- Diversity overcomes fading effects by combining fading paths
  - Typically entails penalty in rate, bandwidth, complexity, or size.