Midterm Review

Midterm only covers material from lectures and HWs

- Overview of Wireless Systems:
 - Nothing from Chapter 1 is on the MT
- Signal Propagation and Channel Models
 - Chapter 2.1-2.4, 2.6-2.10
- Modulation and Performance Metrics
 - Chapter 3.1,3.2.1-3.2.2, 3.3
- Fundamental Capacity Limits
 - Chapter 4
- Impact of Channel on Performance
 - Chapter 6
- Diversity Techniques
 - Chapter 7.1,7.2.1-7.2.2,7.2.4,7.3.1,7.4.1

Future Wireless Networks

Ubiquitous Communication Among People and Devices

Design Challenges

- Wireless channels are a difficult and capacitylimited broadcast communications medium
- Traffic patterns, user locations, and network conditions are constantly changing
- Applications are heterogeneous with hard constraints that must be met by the network
- Energy, delay, and rate constraints change design principles across all layers of the protocol stack

Current/Futre Wireless Systems

- Current Systems
 - 4G Cellular Systems
 - 802.11b/a/n/ac Wireless LANs
 - Satellite Systems
 - Paging Systems
 - Bluetooth
 - Zigbee radios
- Emerging Systems (Can cover in bonus lecture)
 - Ad hoc/mesh wireless networks
 - Cognitive radio networks
 - Wireless sensor networks
 - Energy-harvesting radios
 - Distributed control networks
 - Communications/SP in Health, Bio-medicine, and Neuroscience

Signal Propagation

Path Loss

- Free space, 2-path,...
- Simplified model

$$P_r = P_t K \left\lceil \frac{d_0}{d} \right\rceil^{\gamma}, \ 2 \le \gamma \le 8$$

Shadowing

- dB value is Gaussian
- Find path loss exponent and P_r/P
 shadow STD by curve fitting

Multipath

- Ray tracing
- Statistical model

Outage Probability and Cell Coverage Area

- Path loss: circular cells
- Path loss+shadowing: amoeba cells
 - Tradeoff between coverage and interference
- Outage probability
 - Probability received power below given minimum
- Cell coverage area
 - % of cell locations at desired power
 - Increases as shadowing variance decreases
 - Large % indicates interference to other cells

Statistical Multipath Model

- Random # of multipath components, each with varying amplitude, phase, doppler, and delay
- Leads to time-varying channel impulse response

$$c(\tau, t) = \sum_{n=1}^{N} \alpha_n(t) e^{-j\varphi_n(t)} \delta(\tau - \tau_n(t))$$

- Narrowband channel
 - No signal distortion, just a complex amplitude gain
 - Signal amplitude varies randomly (Rayleigh, Ricean, Nakagami).
 - 2nd order statistics (Bessel function), Average fade duration

Wideband Channels

- Individual multipath components resolvable
- True when time difference between components exceeds signal bandwidth

• Scattering function

$$s(\tau,\rho) = \mathcal{F}_{\Delta t}[A_c(\tau,\Delta t)]$$

- Yields delay spread/coherence BW ($\sigma_{\tau} \sim 1/B_{c}$)
- Yields Doppler spread/coherence time (B_d~1/T_c)

Capacity of Flat Fading Channels

- Channel Capacity
 - Maximum data rate that can be transmitted over a channel with arbitrarily small error
- Capacity of AWGN Channel: Blog₂[1+γ] bps
 - $\gamma = P_r / (N_0 B)$ is the receiver SNR
- Capacity of Flat-Fading Channels
 - Nothing known: capacity typically zero
 - Fading Statistics Known (few results)
 - Fading Known at RX (average capacity)

$$C = \int_{0}^{\infty} B \log_{2}(1+\gamma)p(\gamma)d\gamma \le B \log_{2}(1+\gamma)$$

Capacity in Flat-Fading: γ known at TX/RX

$$C = \max_{P(\gamma) : E[P(\gamma)] = \overline{P}} \int_{0}^{\infty} B \log_{2} \left(1 + \frac{\gamma P(\gamma)}{\overline{P}} \right) p(\gamma) d\gamma$$

Optimal Rate and Power Adaptation

$$\frac{P(\gamma)}{\overline{P}} = \begin{cases} \frac{1}{\gamma_0} - \frac{1}{\gamma} & \gamma \ge \gamma_0 \\ 0 & \text{else} \end{cases}$$

$$\frac{C}{B} = \int_{\gamma_0}^{\infty} \log_2 \left(\frac{\gamma}{\gamma_0}\right) p(\gamma) d\gamma.$$

• The instantaneous power/rate only depend on $p(\gamma)$ through γ_0

Channel Inversion

- Fading inverted to maintain constant SNR
- Simplifies design (fixed rate)
- Greatly reduces capacity
 - Capacity is zero in Rayleigh fading
- Truncated inversion
 - Invert channel above cutoff fade depth
 - Constant SNR (fixed rate) above cutoff
 - Cutoff greatly increases capacity
 - Close to optimal

Frequency Selective Fading Channels

- For time-invariant channels, capacity achieved by water-filling in frequency
- Capacity of time-varying channel unknown
- Approximate by dividing into subbands
 - Each subband has width B_c
 - Independent fading in each subband
 - Capacity is the sum of subband capacities

Linear Modulation in AWGN: MPSK and MQAM

• ML detection induces decision regions

• Example: 8PSK

- P_s depends on
 - # of nearest neighbors
 - Minimum distance d_{min} (depends on γ_s)
 - Approximate expression

$$P_s \approx \alpha_M Q(\sqrt{\beta_M \gamma_s})$$

Linear Modulation in Fading

- In fading γ_s and therefore P_s random
- Metrics: outage, average P_s , combined outage and average.

Moment Generating Function Approach

- Simplifies average P_s calculation
- Uses alternate Q function representation
- \overline{P}_s reduces to MGF of γ_s distribution
- Closed form or simple numerical calculation for general fading distributions
- ullet Fading greatly increases average P_s .

Doppler Effects

- High doppler causes channel phase to decorrelate between symbols
- Leads to an irreducible error floor for differential modulation
 - Increasing power does not reduce error
- Error floor depends on f_DT_b as

$$P_{floor} = \frac{1 - J_0(2\pi f_D T_b)}{2} \approx .5(\pi f_D T_b)^2$$

Delay Spread (ISI) Effects

• Delay spread exceeding a symbol time causes ISI (self interference).

- ISI leads to irreducible error floor: $\overline{P}_{b,floor} \approx (\sigma_{T_m}/T_s)^2$
 - Increasing signal power increases ISI power
- ISI imposes data rate constraint: T_s>>T_m (R_s<<B_c)

$$R \leq \log_2(M) \times \sqrt{\overline{P}_{b,floor}}/\sigma_{T_m}^2$$

Diversity

- Send bits over independent fading paths
 - Combine paths to mitigate fading effects.
- Independent fading paths
 - Space, time, frequency, polarization diversity.
- Combining techniques
 - Selection combining (SC)
 - Maximal ratio combining (MRC)
- Can have diversity at TX or RX
 - In TX diversity, weights constrained by TX power

Selection Combining

- Selects the path with the highest gain
- Combiner SNR is the maximum of the branch SNRs.
- CDF easy to obtain ($\Pi_{ip}(\gamma_{i} < \gamma_{thr})$), pdf found by differentiating the CDF
- P_{out} obtained from CDF. Average P_s typically found numerically
- Diminishing returns with number of antennas.
- Can get up to about 20 dB of gain.

MRC and its Performance

- With MRC, $\gamma_{\Sigma} = \Sigma \gamma_i$ for branch SNRs γ_i
 - Optimal technique to maximize output SNR
 - Yields 20-40 dB performance gains
 - Distribution of γ_{Σ} hard to obtain
- Standard average BER calculation

$$\overline{P}_{S} = \int P_{S}(\gamma_{\Sigma}) p(\gamma_{\Sigma}) d\gamma_{\Sigma} = \int \int ... \int P_{S}(\gamma_{\Sigma}) p(\gamma_{1}) * p(\gamma_{2}) * ... * p(\gamma_{M}) d\gamma_{1} d\gamma_{2} ... d\gamma_{M}$$

- Hard to obtain in closed form
- Integral often diverges
- MGF Approach: $\overline{P}_s = \frac{\alpha_M}{\pi} \int_0^{\pi/2} \prod_{i=1}^M \mathcal{M}_{\gamma_i} \left[\frac{-.5\beta_M}{\sin^2 \phi} \right] d\phi_i$
- TX diversity gain with CSI same as RX diversity

Main Points

- Wireless channels introduce path-loss, shadowing and multipath fading
 - Shadowing introduced outage
 - Flat-fading causes large power fluctuations
 - ISI causes self-interference
- Performance of digital communications in wireless channels random
 - Characterized by outage probability and average probability of error in flat-fading
 - Characterized by irreducible error floors in ISI/Doppler
- Need mechanisms to compensate for multipath
- Diversity compensates for effects of flat fading.