EE 359: Wireless Communications

Announcements and Course Summary

Announcements

- Last HW and bonus HW questions due Sunday 12/10 at 4 pm (no late HWs).
- Final projects must be posted 12/9 (Sat) at midnight.
- 25 bonus points for course evaluations (online)
- Final 12/13/2017, 12:15-3:15pm in Thornton 102 (here)
 - Covers Chapters 9, 10, 12, 13.1-13.2, 13.4, 14.1-14.4, 15.1-15.4 (+ earlier chps)
 - Similar format to MT, but longer: open book, notes.
 - If you need a book or calculator, let us know by 12/8 (Fri)
 - Practice finals posted (10 bonus points). Turn in for solns, by exam for bonus pts
 - Final review and discussion section: Monday, 12/11, 2-4pm, Packard 364.

OHs leading up to final exam

Mine

- This week: today after class, Fri 12-1pm & by appt.
- Next week: Sun 12/10: 5-6pm, Tue 12/11 10:30-12 & by appt.

• TAs:

- Thursday, 12/7, 5-6pm Milind OH
- Thursday, 12/7, 6-7pm Milind Email OH
- Saturday, 12/9, 2-4pm Tom OH (HW8 + Exam questions)
- Monday, 12/11, 2-4pm Final review
- Monday, 12/11, 4-6pm Tom OH
- Tuesday, 12/12 2-4pm Milind OH
- Wednesday, 12/13, 9:30am-11:30am, Tom OH

Course Summary

- Signal Propagation and Channel Models
- Modulation and Performance Metrics
- Impact of Channel on Performance
- Fundamental Capacity Limits
- Flat Fading Mitigation: Diversity and Adaptive Modulation
- ISI Mitigation
 - Equalization (not covered)
 - Multicarrier Modulation/OFDM
 - Spread Spectrum
- Multiuser Systems
 - Multiple access: time/frequency/code/space division
 - Random access
- Cellular Systems
 - Multiuser Detection
 - Area Spectral Efficiency

Future Wireless Networks

Ubiquitous Communication Among People and Devices

Design Challenges

- Wireless channels are a difficult and capacitylimited broadcast communications medium
- Traffic patterns, user locations, and network conditions are constantly changing
- Applications are heterogeneous with hard constraints that must be met by the network
- Energy, delay, and rate constraints change design principles across all layers of the protocol stack

Signal Propagation

Path Loss

- Free space, 2-path, general ray tracing, mmwave
- Simplified model

$$P_r = P_t K \left[\frac{d_0}{d} \right]^{\gamma}, \ 2 \le \gamma \le 8$$

Shadowing

- dB value is Gaussian
- Find path loss exponent and shadow STD by curve fitting

- Ray tracing
- Statistical model

Outage Probability and Cell Coverage Area

- Path loss: circular cells
- Path loss+shadowing: amoeba cells
 - Tradeoff between coverage and interference
- Outage probability
 - Probability received power below given minimum
- Cell coverage area
 - % of cell locations at desired power
 - Increases as shadowing variance decreases
 - Large % indicates interference to other cells

Statistical Multipath Model

- Random # of multipath components, each with varying amplitude, phase, doppler, and delay
- Leads to time-varying channel impulse response

$$c(\tau, t) = \sum_{n=1}^{N} \alpha_n(t) e^{-j\varphi_n(t)} \delta(\tau - \tau_n(t))$$

- Narrowband channel
 - No signal distortion, just a complex amplitude gain
 - Signal amplitude varies randomly (Rayleigh, Ricean, Nakagami).
 - 2nd order statistics (Bessel function), Average fade duration

Wideband Channels

- Individual multipath components resolvable
- True when time difference between components exceeds signal bandwidth

• Scattering function

$$s(\tau,\rho) = \mathcal{F}_{\Delta t}[A_c(\tau,\Delta t)]$$

- Yields delay spread/coherence BW ($\sigma_{\tau} \sim 1/B_{c}$)
- Yields Doppler spread/coherence time (B_d~1/T_c)

Capacity of Flat Fading Channels

- Channel Capacity
 - Maximum data rate that can be transmitted over a channel with arbitrarily small error
- Capacity of AWGN Channel: Blog₂[1+γ] bps
 - $\gamma = P_r / (N_0 B)$ is the receiver SNR
- Capacity of Flat-Fading Channels
 - Nothing known: capacity typically zero
 - Fading Statistics Known (few results)
 - Fading Known at RX (average capacity)

$$C = \int_{0}^{1} B \log_{2}(1+\gamma)p(\gamma)d\gamma \leq B \log_{2}(1+\overline{\gamma})$$

Capacity in Flat-Fading: γ known at TX/RX

$$C = \max_{P(\gamma) : E[P(\gamma)] = \overline{P}} \int_{0}^{\infty} B \log_{2} \left(1 + \frac{\gamma P(\gamma)}{\overline{P}} \right) p(\gamma) d\gamma$$

Optimal Rate and Power Adaptation

$$\frac{P(\gamma)}{\overline{P}} = \begin{cases} \frac{1}{\gamma_0} - \frac{1}{\gamma} & \gamma \ge \gamma_0 \\ 0 & \text{else} \end{cases}$$

$$\frac{C}{B} = \int_{\gamma_0}^{\infty} \log_2 \left(\frac{\gamma}{\gamma_0}\right) p(\gamma) d\gamma.$$

• The instantaneous power/rate only depend on $p(\gamma)$ through γ_0

Channel Inversion

- Fading inverted to maintain constant SNR
- Simplifies design (fixed rate)
- Greatly reduces capacity
 - Capacity is zero in Rayleigh fading
- Truncated inversion
 - Invert channel above cutoff fade depth
 - Constant SNR (fixed rate) above cutoff
 - Cutoff greatly increases capacity
 - Close to optimal

Frequency Selective Fading Channels

- For time-invariant channels, capacity achieved by water-filling in frequency
- Capacity of time-varying channel unknown
- Approximate by dividing into subbands
 - Each subband has width B_c
 - Independent fading in each subband
 - Capacity is the sum of subband capacities

Linear Modulation in AWGN: MPSK and MQAM

ML detection induces decision regions

• Example: 8PSK

- P_s depends on
 - # of nearest neighbors
 - Minimum distance d_{min} (depends on γ_s)
 - Approximate expression

$$P_s \approx \alpha_M Q(\sqrt{\beta_M \gamma_s})$$

Linear Modulation in Fading

- In fading γ_s and therefore P_s random
- Metrics: outage, average P_s , combined outage and average.

Moment Generating Function Approach

- Simplifies average P_s calculation
- Uses alternate Q function representation
- \overline{P}_s reduces to MGF of γ_s distribution
- Closed form or simple numerical calculation for general fading distributions
- ullet Fading greatly increases average P_s .

Doppler Effects

- High doppler causes channel phase to decorrelate between symbols
- Leads to an irreducible error floor for differential modulation
 - Increasing power does not reduce error
- Error floor depends on f_DT_b as

$$P_{floor} = \frac{1 - J_0(2\pi f_D T_b)}{2} \approx .5(\pi f_D T_b)^2$$

Delay Spread (ISI) Effects

• Delay spread exceeding a symbol time causes ISI (self interference).

- ISI leads to irreducible error floor: $\overline{P}_{b,floor} \approx (\sigma_{T_m}/T_s)^2$
 - Increasing signal power increases ISI power
- ISI imposes data rate constraint: T_s>>T_m (R_s<<B_c)

$$R \leq \log_2(M) \times \sqrt{\overline{P}_{b,floor}}/\sigma_{T_m}^2$$

Diversity

- Send bits over independent fading paths
 - Combine paths to mitigate fading effects.
- Independent fading paths
 - Space, time, frequency, polarization diversity.
- Combining techniques
 - Selection combining (SC)
 - Maximal ratio combining (MRC)
- Can have diversity at TX or RX
 - In TX diversity, weights constrained by TX power

Selection Combining

- Selects the path with the highest gain
- Combiner SNR is the maximum of the branch SNRs.
- CDF easy to obtain, pdf found by differentiating.
- Diminishing returns with number of antennas.
- Can get up to about 20 dB of gain.

MRC and its Performance

- With MRC, $\gamma_{\Sigma} = \Sigma \gamma_i$ for branch SNRs γ_i
 - Optimal technique to maximize output SNR
 - Yields 20-40 dB performance gains
 - Distribution of γ_{Σ} hard to obtain
- Standard average BER calculation

$$\overline{P}_{S} = \int P_{S}(\gamma_{\Sigma}) p(\gamma_{\Sigma}) d\gamma_{\Sigma} = \int \int ... \int P_{S}(\gamma_{\Sigma}) p(\gamma_{1}) * p(\gamma_{2}) * ... * p(\gamma_{M}) d\gamma_{1} d\gamma_{2} ... d\gamma_{M}$$

- Hard to obtain in closed form
- Integral often diverges
- MGF Approach: $\overline{P}_s = \frac{\alpha_M}{\pi} \int_0^{\pi/2} \prod_{i=1}^M \mathcal{M}_{\gamma_i} \left[\frac{-.5\beta_M}{\sin^2 \phi} \right] d\phi_i$
- TX diversity has same gains as RX diversity

Variable-Rate Variable-Power MQAM

Goal: Optimize $S(\gamma)$ and $M(\gamma)$ to maximize $EM(\gamma)$

Optimal Adaptive Scheme

Power Water-Filling

$$\frac{S(\gamma)}{\overline{S}} = \begin{cases} \frac{1}{\gamma_0} - \frac{1}{\gamma K} & \gamma \ge \frac{\gamma_0}{K} = \gamma_K \\ 0 & \text{else} \end{cases}$$

Spectral Efficiency

$$\frac{R}{B} = \int_{\gamma_{K}}^{\infty} \log_{2} \left(\frac{\gamma}{\gamma_{K}} \right) p(\gamma) d\gamma.$$

Equals Shannon capacity with an effective power loss of K.

Constellation Restriction

• Power adaptation:

$$\frac{P_{j}(\gamma)}{P} = \begin{cases} (M_{j} - 1)/(\gamma K) & \gamma_{j} \leq \gamma < \gamma_{j+1}, j > 0 \\ 0 & \gamma < \gamma_{1} \end{cases}$$

Average rate:

$$\frac{R}{B} = \sum_{j=1}^{N} \log_2 M_j p(\gamma_j \le \gamma < \gamma_{j+1})$$

Performance loss of 1-2 dB

Practical Constraints (not on final)

- Constant power restriction
 - Another 1-2 dB loss
- Constellation updates
 - Need constellation constant over 10-100T_s
- Estimation error and delay
 - Lead to imperfect CSIT (assume perfect CSIR)
 - Causes mismatch between channel and rate
 - Leads to an irreducible error floor

Multiple Input Multiple Output (MIMO)Systems

- MIMO systems have multiple (M) transmit and receiver antennas
- Decompose channel through transmit precoding $(x=V\tilde{x})$ and receiver shaping $(\tilde{y}=U^Hy)$

- Leads to $R_H \le \min(M_t, M_r)$ independent channels with gain σ_i (ith singular value of H) and AWGN
- Independent channels lead to simple capacity analysis and modulation/demodulation design

Capacity of MIMO Systems

- Depends on what is known at TX and RX and if channel is static or fading
- For static channel with perfect CSI at TX and RX, power water-filling over space is optimal:
 - In fading waterfill over space (based on short-term power constraint) or space-time (long-term constraint)
- Without transmitter channel knowledge, capacity metric is based on an outage probability
 - P_{out} is the probability that the channel capacity given the channel realization is below the transmission rate.
- Massive MIMO: in high SNR, singular values converge to a constant: C=min(M_t,M_r)Blog(1+ρ)

Beamforming

Scalar codes with transmit precoding

- Transforms system into a SISO system with diversity.
 - Array and diversity gain
 - •Greatly simplifies encoding and decoding.
 - •Channel indicates the best direction to beamform
 - •Need "sufficient" knowledge for optimality of beamforming
- ullet Precoding transmits more than 1 and less than $R_{\rm H}$ streams
 - •Transmits along some number of dominant singular values

Diversity vs. Multiplexing

• Use antennas for multiplexing or diversity

• Diversity/Multiplexing tradeoffs (Zheng/Tse)

$$\lim_{SNR\to\infty} \frac{\log P_{e}(SNR)}{\log SNR} = -d$$

$$\lim_{SNR\to\infty} \frac{R(SNR)}{\log SNR} = r$$

$$d^*(r) = (M_t - r)(M_r - r)$$

How should antennas be used?

Use antennas for multiplexing:

Use antennas for diversity

Depends on end-to-end metric: Solve by optimizing app. metric

MIMO Receiver Design

Optimal Receiver:

- Maximum likelihood: finds input symbol most likely to have resulted in received vector
- Exponentially complex # of streams and constellation size

Linear Receivers

- Zero-Forcing: forces off-diagonal elements to zero, enhances noise
- Minimum Mean Square Error: Balances zero forcing against noise enhancement

Sphere Decoder:

- Only considers possibilities within a sphere of received symbol.
 - If minimum distance symbol is within sphere, optimal, otherwise null is returned

$$\hat{x} = \arg\min|y - Hx|^2$$

Sphere Decoding

$$\hat{x} = \underset{x:|y-Hx| < r}{\operatorname{arg\,min}} |y - Hx|^2$$

Other MIMO Design Issues Not covered in lecture/HW/exams

• Space-time coding:

- Map symbols to both space and time via space-time block and convolutional codes.
- For OFDM systems, codes are also mapped over frequency tones.

Adaptive techniques:

- Fast and accurate channel estimation
- Adapt the use of transmit/receive antennas
- Adapting modulation and coding.

• Limited feedback transmit precoding:

- Partial CSI introduces interference in parallel decomp: can use interference cancellation at RX
- TX codebook design for quantized channel

ISI Countermeasures

Equalization

- Signal processing at receiver to eliminate ISI
- Complex at high data rates, performs poorly in fast-fading
- Not used in state-of-the-art wireless systems

Multicarrier Modulation

- Break data stream into lower-rate substreams modulated onto narrowband flat-fading subchannels
- Spread spectrum
 - Superimpose a fast (wideband) spreading sequence on top of data sequence, allows resolution for combining or attenuation of multipath components.
- Antenna techniques (Massive MIMO)
 - (Highly) directional antennas reduce delay spread/ISI

Multicarrier Modulation

- Divides bit stream into N substreams
- Modulates substream with bandwidth B/N
 - Separate subcarriers
 - $B/N < B_c \longrightarrow flat fading (no ISI)$
- Requires N modulators and demodulators
 - Impractical: solved via OFDM implementation

Overlapping Substreams

- Can have completely separate subchannels
 - Required passband bandwidth is B.
- OFDM overlaps substreams
 - Substreams (symbol time T_N) separated in RX
 - Minimum substream separation is B_N.
 - Total required bandwidth is B/2 (for $T_N=1/B_N$)

FFT Implementation of OFDM

- Use IFFT at TX to modulate symbols on each subcarrier
- Cyclic prefix makes linear convolution of channel circular, so no interference between FFT blocks in RX processing
- Reverse structure (with FFT) at receiver

OFDM Design Issues

- Timing/frequency offset:
 - Impacts subcarrier orthogonality; self-interference
- Peak-to-Average Power Ratio (PAPR)
 - Adding subcarrier signals creates large signal peaks
 - Solve with clipping or PAPR-optimized coding
- Different fading across subcarriers
 - Mitigate by precoding (fading inversion), adaptive modulation over frequency, and coding across subcarriers
- MIMO-OFDM
 - Apply OFDM across each spatial dimension
 - Can adapt across space, time, and frequency
 - MIMO-OFDM represented by a matrix, extends matrix representation of OFDM alone (considered in HW)

MIMO-OFDM

- Send OFDM symbol along each spatial dimension
 - MIMO diversity-capacity benefits, OFDM removes ISI
 - Can adapt across time, space, and frequency

- OFDM can be represented by a matrix:
 - Represents DFT as a matrix: y=\hat{H}x+\nu, \hat{H} circulant
 - Then vector $Y = \Lambda X + v_Q$ for Λ an NxN diagonal matrix
 - Cyclic prefix added after DFT
- MIMO-OFDM matrix representation: y=Hx+ν
 - Dimensions are H: $NM_rx(N+\mu)M_t$; x: $(N+\mu)M_t$; y,v: M_rN
 - Extends matrix representation of OFDM (example in HW)

Direct Sequence Spread Spectrum

• Bit sequence modulated by chip sequence

- Spreads bandwidth by large factor (K)
- Despread by multiplying by $s_c(t)$ again $(s_c(t)=1)$
- Mitigates ISI and narrowband interference
 - ISI mitigation a function of code autocorrelation
- Must synchronize to incoming signal

ISI and Interference Rejection

• Narrowband Interference Rejection (1/K)

• Multipath Rejection (Autocorrelation $\rho(\tau)$)

- Short codes repeat every Ts, so poor multipath rejection at integer multiples of Ts
- Otherwise take a partial autocorrection

RAKE Receiver

- Multibranch receiver
 - Branches synchronized to different MP components

- These components can be coherently combined
 - Use SC, MRC, or EGC

Multiple Access

Sharing system resources across multiple users

Uplink:

Many Transmitters to One Receiver.

Downlink:

One Transmitter to Many Receivers.

Uplink and Downlink typically duplexed in time or frequency

Full-duplex radios are being considered for 5G systems

Creating Multiple Channels

• Frequency Division

OFDMA

Time Division

- Code Division
 - Code cross-correlation dictates interference
 - Multiuser Detection
- Space (MIMO Systems)
- Hybrid Schemes

Code Division via DSSS

• Interference between users mitigated by code cross correlation

$$\hat{x}(t) = \int_{0}^{T_b} \alpha_1 s_1(t) s_{c1}^2(t) \cos^2(2\pi f_c t) + \alpha_2 s_2(t - \tau) s_{c2}(t - \tau) s_{c1}(t) \cos(2\pi f_c t) \cos(2\pi f_c (t - \tau)) dt$$

$$= .5\alpha_1 d_1 + .5\alpha_2 d_2 \int_{0}^{T_b} s_{c1}(t) s_{c2}(t) dt = .5d_1 + .5d_2 \cos(2\pi f_c \tau) \rho_{12}(\tau)$$

- In downlink, signal and interference have same received power
- In uplink, "close" users drown out "far" users (near-far problem)

Random Access

- In multiple access, channels are assigned by a centralized controller
 - Requires a central controller and control channel
 - Inefficient for short and/or infrequent data transmissions
- In random access, users access channel randomly when they have data to send
 - A simple random access scheme will be explored in homework
- ALOHA Schemes (not covered on exam)
 - Data is packetized.
 - Packets occupy a given time interval

- Pure ALOHA
 - send packet whenever data is available
 - a collision occurs for any partial overlap of packets (nonorthogonal slots)
 - Packets received in error are retransmitted after random delay interval (avoids subsequent collisions).

- Slotted ALOHA
 - same as ALOHA but with packet slotting
 - packets sent during predefined timeslots
 - A collision occurs when packets overlap,
 but there is no partial overlap of packets
 - Packets received in error are retransmitted after random delay interval.

Cellular System Design

- Frequencies/time slots/codes reused at spatially-separated locations
 - Exploits power falloff with distance.
 - Best efficiency obtained with minimum reuse distance
- Base stations perform centralized control functions
 - Call setup, handoff, routing, etc.
- Ideally, interference results in SINR above desired target.
 - The SINR depends on base station locations, user locations, propagation conditions, and interference reduction techniques.
 - System capacity is interference-limited as SINR must be above target
 - MIMO introduces diversity-multiplexing-interference reduction tradeoff
 - Multiuser detection reduces inter/intracell interference: increases capacity

Multiuser Detection

- Multiuser detection (MUD) exploits the fact that the structure of the interference is known
 - Maximum likelihood: exponentially complex in number of users N
 - Successive interference cancellation (SIC)

Why not ubiquitous today? Power, A/D Precision, Error propagation

Area Spectral Efficiency (ASE)

• System capacity due to optimal cell size and/or reuse distance: $A_e = \sum R_i/(.25D^2\pi)$ bps/Hz/Km².

Area Spectral Efficiency

- S/I increases with reuse distance (increases link capacity).
- Tradeoff between reuse distance and link spectral efficiency (bps/Hz).
- Capacity increases exponentially as cell size decreases
- Future cellular systems will be hierarchical
 - Large cells for coverage, small cells for capacity

Megathemes of EE359

- The wireless vision poses great technical challenges
- The wireless channel greatly impedes performance
 - Low fundamental capacity; Channel is randomly time-varying.
 - Flat fading and ISI must be compensated for.
- Compensate for flat fading with diversity or adaptive mod.
 - MIMO provides diversity and/or multiplexing gain
- A plethora of ISI compensation techniques exist
 - Various tradeoffs in performance, complexity, and implementation.
 - OFDM is the dominant technique; works well with MIMO, basis for 4G/5G Cellular/WiFi due to adaptivity over time/space/frequency
- Sharing spectrum among multiple users a major challenge
- Cellular systems exploit frequency reuse; better physical layer design, flexibility, and interference reduction needed in 5G