EE359 Discussion Session 8 Beamforming, Diversity-multiplexing tradeoff, MIMO receiver design, Multicarrier modulation

November 29, 2017

MIMO concepts

- Beamforming
- Diversity multiplexing tradeoff for point to point MIMO

2 MIMO Decoding

- Linear Decoders
- Sphere Decoding

1 MIMO concepts

- Beamforming
- Diversity multiplexing tradeoff for point to point MIMO

2 MIMO Decoding

- Linear Decoders
- Sphere Decoding

Brief recap of the notation

$$\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{n}$$

 $\tilde{\mathbf{y}} = \mathbf{\Sigma}\tilde{\mathbf{x}} + \tilde{\mathbf{n}}$

$$\begin{split} \mathbf{H} &= \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathbf{H}} = \sum_{i} \sigma_{i} \mathbf{u}_{i} \mathbf{v}^{\mathbf{H}}_{i} \\ \mathbf{x} &= \mathbf{V} \tilde{\mathbf{x}} \qquad \tilde{\mathbf{y}} = \mathbf{U}^{\mathbf{H}} \mathbf{y} \end{split}$$

- N_t transmit antennas and N_r receive antennas
- Decomposition into parallel channels with perfect CSIT and CSIR
- $\sigma_1 > \sigma_2 > \dots$

MIMO concepts

• Beamforming

• Diversity multiplexing tradeoff for point to point MIMO

2 MIMO Decoding

- Linear Decoders
- Sphere Decoding

Beamforming

Idea

If CSIT available, simply transmit along vector with the largest singular value, i.e. make

 $\tilde{x} \in \mathbb{C}$ scalar - one value

Some points

- Equivalent scalar channel $\tilde{y} = \mathbf{u}^{\mathbf{H}} \mathbf{H} \mathbf{v} \tilde{x} + \tilde{n}_1$
- \bullet Maximizes SNR if ${\bf u}$ and ${\bf v}$ are first singular vectors
- Optimal only if other parallel channels are "weak" (low SNR)
- \bullet Any choice of ${\bf u}$ and ${\bf v}$ other than ${\bf u}_1$ and ${\bf v}_1$ is suboptimal

MIMO concepts

Beamforming

• Diversity multiplexing tradeoff for point to point MIMO

2 MIMO Decoding

- Linear Decoders
- Sphere Decoding

The tradeoff

Setting

CSI (channel state info) known at receiver but *is unknown* at transmitter, finite blocklengths.

Intuition

Antennas can be used for higher reliability (diversity) or rate (multiplexing)

Fineprint

- ${\ensuremath{\bullet}}$ We assume i.i.d. complex normal entries for ${\ensuremath{\mathbf{H}}}$
- High SNR concept:
 - Multiplexing gain $r = \lim_{SNR \to \infty} \frac{R(SNR)}{\log_2(SNR)}$
 - Diversity gain $d = \lim_{\text{SNR}\to\infty} \frac{-\log P_e}{\log \text{SNR}}$

The tradeoff

Figure: Blue curve for $N_t = 3, N_r = 3$, green for $N_t = 2, N_r = 2$

- Blue dot corresponds to low rate, high reliability transmission
- Red dot corresponds to high rate, low reliability transmission

Achievability

Any point on this tradeoff curve may be achieved in general by a suitable *space time code*

MIMO concepts

- Beamforming
- Diversity multiplexing tradeoff for point to point MIMO

2 MIMO Decoding

- Linear Decoders
- Sphere Decoding

The optimal receiver

Idea

 $\label{eq:maximum likelihood criterion: } \hat{\mathbf{x}} = \underset{\mathbf{x} \in \mathcal{X}}{\operatorname{argmax}} \quad p(\mathbf{x} | \mathbf{H}, \mathbf{y})$

Some more details about ML decoder

• For i.i.d. Gaussian noise statistics and uniformly random MQAM signalling, $p(\mathbf{x}|\mathbf{H}, \mathbf{y}) \propto e^{-c||\mathbf{y}-\mathbf{H}\mathbf{x}||^2}$, so

$$\mathbf{\hat{x}} = \mathop{\mathsf{argmax}}_{\mathbf{x}\in\mathcal{X}} \lvert \lvert \mathbf{y} - \mathbf{Hx}
vert
vert^2$$

Problem

An NP-hard combinatorial optimization problem.

MIMO concepts

- Beamforming
- Diversity multiplexing tradeoff for point to point MIMO

2 MIMO Decoding

- Linear Decoders
- Sphere Decoding

Simple approximations: Zero forcing

Idea

Use matrix inversion

Math

$$\mathbf{\hat{x}}=\mathbf{H}^{\dagger}\mathbf{y}$$
 where $\mathbf{H}^{\dagger}=(\mathbf{H}^{\mathbf{H}}\mathbf{H})^{-1}\mathbf{H}^{\mathbf{H}}$ if \mathbf{H} is "tall"

Some features

- Requires $O\left(N_t^3\right)$ operations. (Can't expect to do better than this unless H is sparse)
- Nearly optimal when condition number is close to 1. Poor performance for ill-conditioned channels.

Simple approximations: Linear MMSE decoding

Idea

- Write estimate as an affine function of y. Minimize expected squared error by choosing right affine function.
- Regular MMSE: Assume x to be i.i.d. multivariate Gaussian and compute optimal decoder (minimum expected mean squared error (MSE))

Math (assuming SNR = $1/\sigma^2$)

$$\mathbf{\hat{x}} = (\mathbf{H}^{\mathbf{H}}\mathbf{H} + \sigma^{2}\mathbf{I})^{-1}\mathbf{H}^{\mathbf{H}}\mathbf{y}$$

Some features

- Good complexity (similar to zero forcing)
- Less sensitive to ill-conditioned matrices
- In practice \mathbf{x} is not Gaussian

MIMO concepts

- Beamforming
- Diversity multiplexing tradeoff for point to point MIMO

2 MIMO Decoding

- Linear Decoders
- Sphere Decoding

An ML Algorithm: Enumeration

ML Decoding: Find closest point in ℓ_2 norm. How to search for close points?

Naïve approach Check all M^n points, return closest

Enumeration

BPSK, $N_t = 2$ x_{N_t} $x_{N_{t-1}}$ $x_{N_{t-1}}$ $x_{N_{$

There is no reason two adjacent nodes are close!

Questions

- Is there are smart way to traverse this graph?
- What is our stopping criteria?
- Can we 'prune' nodes?

Better Enumeration: QR Decomposition

New Basis

$$\tilde{x} = Rx, \quad \|y - Hx\|_2 = \|Q^H y - \tilde{x}\|_2$$

Notice: ℓ_2 norm in this basis can be considered element-wise: x_n, \ldots, x_1

'Partial objective':
$$s_m = \sum_{i=1}^m (\langle q_{n-i}, y \rangle - \tilde{x}_{n-i})$$

Prune branches below m if $s_m > r$

Return minimum value of objective function at last depth.

- If r is large enough, gives ML estimate
- If correct solution is pruned, declare error (erased symbol)
- Reducing r reduces complexity. Complexity also based on channel condition number and signal to noise ratio
- Further techniques exist improve enumeration (e.g. LLL algorithm)

Homework 7

Problem 5

Apply ML, Zero Forcing and MMSE decoder. Naïve implementation of ML is fine.

Problem 6

Simple exploration of sphere decoding. No implementation needed!

MIMO concepts

- Beamforming
- Diversity multiplexing tradeoff for point to point MIMO

2 MIMO Decoding

- Linear Decoders
- Sphere Decoding

Intersymbol interference

Problem

Coherence bandwidth of channel is small, thus channel "spreads" wideband signal in time

Some common remedies

- Equalization/deconvolution/channel inversion
- Multicarrier modulation
- Spread spectrum

Multicarrier modulation

Idea

Split wideband (B) into N narrowband chunks each of bandwidth $B/N, {\rm such \ that}$

$$B_n = B/N \le B_c$$

Common approaches

- Frequency division multiplexing (FDM)
- Orthogonal FDM (OFDM)

Uses

- 4G LTE, Wifi use OFDM
- 2G standards (GSM) used FDM heavily

FDM

Idea

Pack a bunch of orthogonal basis functions in frequency domain, thereby creating *parallel channels*

Implementation issues

- Minimum carrier frequency separation with signal duration T_N is $1/T_N \label{eq:transform}$
- Usually need a rolloff factor β and guard bands $\epsilon,$ thus effective occupancy $B_n=N(1+\beta+\epsilon)/T_N$
- Need separate receiver hardware/modulation schemes at each carrier frequency

Homework 7

Problem 7

Two signals $s_i(t)$ and $s_j(t)$ over time T_N are orthogonal if $\int_{t=0}^{T_N} s_i(t) s_j(t) dt = 0$