EE359 Discussion Session 5
 Performance of Linear Modulation in Fading, Diversity

February 12, 2020

Announcements

- Midterm review on Wednesday, February 19, 4-6 pm, in Packard 364
- Midterm on Friday, February 21, 2-4 pm, in Hewlett 103
- OH hour changed for next week - see calendar!

Announcements

- Midterm review on Wednesday, February 19, 4-6 pm, in Packard 364
- Midterm on Friday, February 21, 2-4 pm, in Hewlett 103
- OH hour changed for next week - see calendar!

Today's Outline

- Moment Generating Functions
- Performance in Fading
- Diversity and Diversity Performance analysis

Moments of a Random Variable

Given a random variable \mathbf{X}, and its probability density function $f(x)$, its nth moment is given by:

$$
\mu_{n}=\mathbb{E}\left[\mathbf{X}^{n}\right]=\int_{-\infty}^{\infty} x^{n} f(x) d x
$$

Moments of a Random Variable

Given a random variable \mathbf{X}, and its probability density function $f(x)$, its nth moment is given by:

$$
\mu_{n}=\mathbb{E}\left[\mathbf{X}^{n}\right]=\int_{-\infty}^{\infty} x^{n} f(x) d x
$$

Why do we care? Gives useful characterization of random process

- $n=1$ is the mean
- $n=2$ is the variance
- Higher order moments often interesting

Moment Generating Function

Many ways to compute moments of a random variable. One useful way is throught the Moment Generating Function (MGF):

$$
M_{X}(t)=\mathbb{E}\left[e^{t X}\right]
$$

Moment Generating Function

Many ways to compute moments of a random variable. One useful way is throught the Moment Generating Function (MGF):

$$
M_{X}(t)=\mathbb{E}\left[e^{t X}\right]
$$

Intuition:

$$
M_{X}(t)=\mathbb{E}\left[e^{t X}\right]=1+t \mathbb{E}[X]+\frac{t^{2} \mathbb{E}\left[X^{2}\right]}{2!}+\cdots
$$

Differentiating and setting $t=0$ gives moments!

Moment Generating Function

More concretely:

$$
\mu_{n}=\mathbb{E}\left[X^{n}\right]=\left.\frac{d^{n} M_{X}}{d t^{n}}\right|_{t=0}
$$

Moment Generating Function

More concretely:

$$
\mu_{n}=\mathbb{E}\left[X^{n}\right]=\left.\frac{d^{n} M_{X}}{d t^{n}}\right|_{t=0}
$$

Another useful observation:

$$
\begin{aligned}
\mathcal{L}\left\{f_{X}\right\}(s) & =\int_{-\infty}^{\infty} e^{-s x} f_{X}(x) d x \\
M_{X}(t)=\mathcal{L}\left\{f_{X}\right\}(-t) & =\int_{-\infty}^{\infty} e^{t x} f_{X}(x) d x
\end{aligned}
$$

MGF can be found from two-sided Laplace tranform of PDF

Sums of Random Variables

MGFs are also useful for dealing with linear combinations of random variables

$$
S_{n}=\sum_{i=1}^{n} a_{i} X_{i}
$$

- a_{i} arbitrary constants
- X_{i} independant (not necessarily identical) random variables.

PDF of S_{n} is found from convolution of each X_{i}.

Moments of S_{n} are given by:

$$
M_{S_{n}}(t)=\prod_{i=1}^{n} M_{X_{i}}\left(a_{i} t\right)
$$

Performance Metrics under Fading

System model

$$
y[i]=\sqrt{\gamma[i]} x[i]+n[i]
$$

Different metrics

- Average probability of error: Relevant when channel is fast fading
- Outage probability: Relevant when channel is slow fading
- Combined Outage + Avg. probability of error: shadowing (slow) and fading (fast)

Average Probability of Error

- Integrate the Q function over fading distributions
- Use change of integration order to try to get closed form expressions

Some useful relations

- P_{b} for BPSK in Rayleigh $\approx \frac{1}{4 \bar{\gamma}}$ (Closed form also possible)
- P_{b} for DPSK in Rayleigh $\approx \frac{1}{2 \bar{\gamma}}$ (Closed form possible)
- $Q(x)=\int_{x}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2} d z=\int_{0}^{\pi / 2} e^{-x^{2} /\left(2 \sin ^{2} \phi\right)} d \phi$
\bar{P}_{s} using $\operatorname{MGF}\left(\mathcal{M}_{\gamma}(s)=\int_{0}^{\infty} e^{s \gamma} p(\gamma) d \gamma\right)$
Idea
Use fact that

$$
Q(x)=\int_{x}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{y^{2}}{2}} d y=\frac{1}{\pi} \int_{0}^{\pi / 2} e^{-x^{2} / 2 \sin ^{2} \phi} d \phi
$$

\bar{P}_{s} using $\operatorname{MGF}\left(\mathcal{M}_{\gamma}(s)=\int_{0}^{\infty} e^{s \gamma} p(\gamma) d \gamma\right)$

Idea

Use fact that

$$
Q(x)=\int_{x}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{y^{2}}{2}} d y=\frac{1}{\pi} \int_{0}^{\pi / 2} e^{-x^{2} / 2 \sin ^{2} \phi} d \phi
$$

$$
\begin{aligned}
\bar{P}_{s} & \approx \int_{0}^{\infty} \frac{\alpha_{M}}{\pi} Q\left(\sqrt{\beta_{M} \gamma}\right) p(\gamma) d \gamma \\
& =\frac{\alpha_{M}}{\pi} \int_{\gamma=0}^{\gamma=\infty} \int_{\phi=0}^{\phi=\pi / 2} e^{-\beta_{M} \gamma / 2 \sin ^{2} \phi} p(\gamma) d \phi d \gamma \\
& =\frac{\alpha_{M}}{\pi} \int_{\phi=\pi / 2}^{\phi=\pi / 2} \int_{\gamma=0}^{\gamma=\infty} e^{-\beta_{M} \gamma / 2 \sin ^{2} \phi} p(\gamma) d \gamma d \phi \\
& =\frac{\alpha_{M}}{\pi} \int_{\phi=0}^{\phi=\pi / 2} \mathcal{M}_{\gamma}\left(-\beta_{M} / 2 \sin ^{2} \phi\right) d \phi
\end{aligned}
$$

Example: BPSK in Rayleigh Fading

BPSK in AWGN: $P_{b}=Q\left(\sqrt{2 \gamma_{b}}\right)$ (i.e. $\left.\alpha=1 \beta=2\right)$.

Example: BPSK in Rayleigh Fading

BPSK in AWGN: $P_{b}=Q\left(\sqrt{2 \gamma_{b}}\right)$ (i.e. $\left.\alpha=1 \beta=2\right)$.

$$
\begin{aligned}
M_{\gamma_{b}}(s) & =\left(1-s \bar{\gamma}_{b}\right)^{-1} \\
M_{\gamma_{b}}\left(-\frac{1}{\sin ^{2} \phi}\right) & =\left(1+\frac{\bar{\gamma}_{b}}{\sin ^{2} \phi}\right)^{-1}
\end{aligned}
$$

Example: BPSK in Rayleigh Fading

BPSK in AWGN: $P_{b}=Q\left(\sqrt{2 \gamma_{b}}\right)$ (i.e. $\left.\alpha=1 \beta=2\right)$.

$$
\begin{aligned}
M_{\gamma_{b}}(s) & =\left(1-s \bar{\gamma}_{b}\right)^{-1} \\
M_{\gamma_{b}}\left(-\frac{1}{\sin ^{2} \phi}\right) & =\left(1+\frac{\bar{\gamma}_{b}}{\sin ^{2} \phi}\right)^{-1}
\end{aligned}
$$

Integral now becomes:

$$
\bar{P}_{b}=\frac{1}{\pi} \int_{0}^{\pi / 2}\left(1+\frac{\bar{\gamma}_{b}}{\sin ^{2} \phi}\right)^{-1} d \phi
$$

Error floors

As $\gamma_{s} \rightarrow \infty, P_{\text {error }} \rightarrow 0$ usually. Not true if there is an error floor!

Some reasons

- Differential modulation with large symbol times and/or fast fading (due to small T_{c})
- Due to intersymbol interference ISI (or small B_{c}) $P_{b} \approx\left(\frac{\sigma}{T_{s}}\right)^{2}$

Some factors

- Correlation function of channel (channel coherence time T_{c} and bandwidth B_{c})
- Fading statistics, symbol time T_{s}

Question

What happens to error floors if T_{s} decreases or data rate increases?

Diversity

Idea

Use of independent fading realizations can reduce the probability of error/outage events

Some observations

- Diversity can be in time, space, frequency, polarization, ...
- Diversity order used as a measure of diversity, defined as

$$
M=\lim _{\gamma \rightarrow \infty} \frac{-\log P_{e}}{\log \bar{\gamma}}, P_{e}=\bar{P}_{s} \text { or } P_{\text {out }}
$$

- Can also use array gain (or SNR gain) $\bar{\gamma}_{\Sigma} / \bar{\gamma}$, where $\bar{\gamma}_{\Sigma}$ is the average SNR after "diversity combining"

Diversity order

Diversity order
Specifying diversity order M is roughly equivalent to saying that at

$$
\bar{P}_{e} \approx(\bar{\gamma})^{-M} \quad \text { or } \quad P_{\text {out }} \approx\left(P_{\text {out }, 1 \text { branch }}\right)^{M}
$$

Diversity order

Diversity order
Specifying diversity order M is roughly equivalent to saying that at

$$
\bar{P}_{e} \approx(\bar{\gamma})^{-M} \quad \text { or } \quad P_{\text {out }} \approx\left(P_{\text {out }, 1 \text { branch }}\right)^{M}
$$

Array gain
Array gain A_{g} is equivalent to ratio of average SNRs after diversity combining

$$
A_{g}=\frac{\bar{\gamma}_{\Sigma}}{\bar{\gamma}}
$$

Diversity combining techniques

Two main schemes:

- Selection combining: Choose the largest SNR of the independent realizations
- Maximal ratio combining: Combine all the independent received SNRs to maximize SNR

Selection combining (SC)

Idea

Given M i.i.d. r.v., $\gamma_{1}, \ldots, \gamma_{M} \geq 0$,

$$
P\left(\max _{i}\left(\gamma_{i}\right)<c\right)=P\left(\gamma_{i}<c\right)^{M}
$$

Some observations

- Define $\gamma_{\Sigma}=\max _{i} \gamma_{i}$
- In Rayleigh fading $\bar{\gamma}_{\Sigma}=\bar{\gamma}\left(\sum_{i=1}^{M} 1 / i\right)(\bar{\gamma}$: average SNR at a branch)
- \bar{P}_{b} in general difficult, but for DPSK and Rayleigh fading,

$$
\bar{P}_{b}=M / 2 \sum_{m=0}^{M-1}(-1)^{m} \frac{\binom{M-1}{m}}{1+m+\bar{\gamma}}
$$

Selection combining continued

Outage probability

$$
P_{\text {out }}=\left(1-e^{-\frac{\gamma_{0}}{\gamma}}\right)^{M}
$$

Question (SC in Rayleigh fading)

- What is the diversity gain?:
- What is the SNR gain?:

Selection combining continued

Outage probability

$$
P_{\text {out }}=\left(1-e^{-\frac{\gamma_{0}}{\gamma}}\right)^{M}
$$

Question (SC in Rayleigh fading)

- What is the diversity gain?: M
- What is the SNR gain?: $\sum_{i}^{M} 1 / i$

Maximal ratio combining (MRC)

Idea

Instead of discarding weaker branches, combine the SNRs of all branches, i.e.

$$
\gamma_{\Sigma}=\sum_{i}^{M} \gamma_{i}
$$

Maximal ratio combining (MRC)

Idea

Instead of discarding weaker branches, combine the SNRs of all branches, i.e.

$$
\gamma_{\Sigma}=\sum_{i}^{M} \gamma_{i}
$$

Nuts and bolts

- Need to make the received components of the same phase (not a problem with modern DSP)
- Maximal ratio combining maximizes received SNR, i.e. solves the following problem

$$
\max _{\mathbf{a}:|\mathbf{a}| \|^{2}=1} \frac{\mathbf{E}\left[\left|\mathbf{a}^{H} \gamma x\right|^{2}\right]}{\mathrm{E}\left[\left|\mathbf{a}^{H} \mathbf{n}\right|^{2}\right]}
$$

- MGF of sums decompose into product of individual MGFs so easy to analyse \bar{P}_{s}

MRC continued (Outage probability and \bar{P}_{s})

Outage probability

$$
P_{\mathrm{out}}=1-e^{\frac{\gamma_{0}}{\bar{\gamma}}}\left(\sum_{i=0}^{M-1}\left(\frac{\gamma_{0}}{\bar{\gamma}}\right)^{i} / i!\right)
$$

MRC continued (Outage probability and \bar{P}_{s})
Outage probability

$$
P_{\text {out }}=1-e^{\frac{\gamma_{0}}{\gamma}}\left(\sum_{i=0}^{M-1}\left(\frac{\gamma_{0}}{\bar{\gamma}}\right)^{i} / i!\right)
$$

Average probability of error \bar{P}_{s}

- The MGF of sum decouples into product of MGFs
- For DPSK and Rayleigh fading, average error probability is

$$
\frac{1}{2} E_{\gamma_{\Sigma}}\left[e^{-\gamma_{\Sigma}}\right]=\frac{1}{2} \prod_{i=1}^{M} E_{\gamma_{i}}\left[e^{-\gamma_{i}}\right]=\frac{1}{2} \prod_{i=1}^{M} \mathcal{M}(-1)
$$

- For general constellations

$$
P_{s}=C \int_{\phi=A}^{\phi=B}\left(\mathcal{M}\left(-\gamma / 2 \sin ^{2} \phi\right)\right)^{M} d \phi
$$

Questions

- What is the diversity order for MRC?:
- What is the SNR gain for MRC?:

Questions

- What is the diversity order for MRC?: M
- What is the SNR gain for MRC?: M

Note: Assumes perfect RX CSI

