EE359 Discussion Session 3 Capacity of Flat and Frequency Selective Channels

February 5, 2020

Note about scattering functions

For deterministic response

$$h(t,\tau) = \sum_{i} \alpha_i(t) e^{-j2\pi(t-\tau_i(t))} \delta(t-\tau_i(t))$$

With no movement (Doppler), $h(t,\tau) \rightarrow h(\tau)$ becomes time-invariant response (LTI system)

For deterministic response

$$h(t,\tau) = \sum_{i} \alpha_i(t) e^{-j2\pi(t-\tau_i(t))} \delta(t-\tau_i(t))$$

With no movement (Doppler), $h(t,\tau) \rightarrow h(\tau)$ becomes time-invariant response (LTI system)

t (Time)
$$\longleftrightarrow \rho$$
 (Doppler)

$$\tau \text{ (Delay)} \longleftrightarrow f \text{ (Frequency)}$$

What is Capacity?

- Maximum achievable rate with no errors
- Maximum mutual information over all input distributions
- Usually found by proving matching lower (achievability) and upper (converse) bounds
- Often easy to bound, but hard to prove

Notions of Capacity in Wireless Systems

- AWGN Capacity
- Only CSI distribution known at TX and RX
- CSI at RX only
 - With or without outage
- CSI at TX and RX
 - With or without adaptation
 - With or without outage

Capacity of fixed channel with no fading.

$$C = B \log_2(1+\gamma)$$

Can be used to bound other settings

CSI Distribution Known

Really complicated

Channel capacity with CSIR

Two notions of capacity

Ergodic capacity

$$C = B \int \log_2 \left(1 + \gamma\right) p(\gamma) d\gamma$$

 \bullet Achieved by coding over fading states γ

Channel capacity with CSIR

Two notions of capacity

Ergodic capacity

$$C = B \int \log_2 \left(1 + \gamma\right) p(\gamma) d\gamma$$

 \bullet Achieved by coding over fading states γ

Outage capacity

- Find out minimum SNR γ_{min} needed to achieve outage prob P_{out} . If it violates power constraint then C = 0
- Transmit at that SNR thereby achieving

$$C = (1 - P_{out})B\log_2(1 + \gamma_{min})$$

Outage capacity (without CSIT)

Outage capacity

- Find out minimum SNR γ_0 needed to achieve outage prob P_{out} . If it violates power constraint then C = 0
- Transmit at that SNR thereby achieving

$$C = (1 - P_{out})B\log_2(1 + \gamma_0)$$

Capacity with CSIR and CSIT

System model $y[i] = \sqrt{g[i]}x[i] + n[i]$ $\sqrt{g[i]} \sim \text{fading distribution}$ $E[|x[i]|^2] \leq \bar{P}$

• g[i] known at transmitter and receiver

Capacity with CSIR and CSIT

System model $$\begin{split} y[i] &= \sqrt{g[i]}x[i] + n[i] \\ \sqrt{g[i]} \sim \text{fading distribution} \\ E[|x[i]|^2] &\leq \bar{P} \end{split}$$ • g[i] known at transmitter and receiver

....

• What is capacity with fixed TX power?

Capacity with CSIR and CSIT

System model $y[i] = \sqrt{g[i]}x[i] + n[i]$ $\sqrt{g[i]} \sim \text{fading distribution}$ $E[|x[i]|^2] \leq \bar{P}$ • g[i] known at transmitter and receiver

- What is capacity with fixed TX power?
- Can capacity increase with rate and power adaptation?

Towards optimally exploiting the CSI g[i]

Idea

Vary transmit power P and rate R as a function of g[i] or equivalently, of $\gamma = \frac{g[i]\bar{P}}{N_0B}$

• Power $P(\gamma)$

• Rate
$$R = B \log \left(1 + \gamma \frac{P(\gamma)}{\bar{P}} \right)$$

Towards optimally exploiting the CSI g[i]

Idea

Vary transmit power P and rate R as a function of g[i] or equivalently, of $\gamma = \frac{g[i]\bar{P}}{N_0B}$

• Power $P(\gamma)$

• Rate
$$R = B \log \left(1 + \gamma \frac{P(\gamma)}{\bar{P}} \right)$$

Notation

- \bullet Fading distribution given by $p(\gamma)$
- Assuming that Tx uses fixed average power \bar{P} .

Optimization problems for optimal CSIT and CSIR use

Optimization problem

$$\max_{P(\gamma)} \int B \log \left(1 + \frac{P(\gamma)}{\bar{P}} \gamma \right) p(\gamma) d\gamma$$

s.t. $E[P(\gamma)] \leq \bar{P}$
 $P(\gamma) \geq 0 \ \forall \ \gamma$

Optimization problem (discrete γ)

$$\begin{split} \max_{\mathbf{P}(\gamma)} \sum_{i} B \log \left(1 + \frac{P(\gamma_i)}{\bar{P}} \gamma_i \right) p(\gamma_i) \\ \text{s.t. } E[P(\gamma)] \leq \bar{P} \\ P(\gamma_i) \geq 0 \ \forall \ i \end{split}$$

Optimization problems for optimal CSIT and CSIR use

Optimization problem

$$\max_{P(\gamma)} \int B \log \left(1 + \frac{P(\gamma)}{\bar{P}} \gamma \right) p(\gamma) d\gamma$$

s.t. $E[P(\gamma)] \leq \bar{P}$
 $P(\gamma) \geq 0 \ \forall \ \gamma$

Optimization problem (discrete γ)

$$\min_{\mathbf{P}(\gamma)} \sum_{i} -B \log \left(1 + \frac{P(\gamma_i)}{\bar{P}} \gamma_i \right) p(\gamma_i)$$
s.t. $E[P(\gamma)] \leq \bar{P}$
 $P(\gamma_i) \geq 0 \forall i$

Lagrangian Methods

Optimization problem

$$\min_{x \in S} f_0(x),$$

s.t. $f_i(x) \le 0, \forall i = 0, \dots, m,$
s.t. $h_i(x) = 0, \forall i = 0, \dots, p,$

Lagrangian

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$

- ν , λ are called Lagrange multipliers or dual variables
- Process sometimes refered to as "regularlizing constraints".

Lagrangian Duality

0

Dual problem

$$\begin{aligned} g(\lambda,\nu) &= \inf_{x \in \mathcal{S}} L(x,\nu,\lambda) \\ &= \inf_{x \in \mathcal{S}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right) \end{aligned}$$

Solving the dual problem

- Find closed form expression for $g(\lambda,\nu)$: $\nabla_x L(x,\lambda,\nu) = 0$
- $g(\lambda, \nu)$ is now a convex optimization problem (in our case of *one variable*)!

Why consider dual problem?

• Let p^* be the optimal value of the original optimization problem:

 $f_0(\tilde{x}) = p^*, \tilde{x}$ is feasible.

• Let d^{\star} be the optimal value of the dual problem:

$$g(\tilde{\lambda}, \tilde{\nu}) = d^{\star}$$

Lower Bound Property

 $p^{\star} \geq d^{\star}$ as long as $\lambda \geq 0$.

Strong Duality $p^{\star} = d^{\star}$ for many problems! True in our case

Take EE364a/b to understand when and why this is true

Example: Least squares

 $\min x^{\mathsf{T}} x \\ \text{s.t } A x = b$

Dual Function

$$L(x, v) = x^{\mathsf{T}}x + \nu^{\mathsf{T}}(Ax - b)$$

$$\nabla_x L(x, \nu) = 2x + A^{\mathsf{T}}\nu = 0 \Rightarrow x = -(1/2)A^{\mathsf{T}}\nu.$$

Example: Least squares

 $\min x^{\mathsf{T}} x$
s.t Ax = b

Dual Function

$$L(x,v) = x^{\mathsf{T}}x + \nu^{\mathsf{T}}(Ax - b)$$

$$\nabla_x L(x,\nu) = 2x + A^{\mathsf{T}}\nu = 0 \Rightarrow x = -(1/2)A^{\mathsf{T}}\nu.$$

Plug into L to get g:

$$g(\nu) = L((-1/2))A^{\mathsf{T}}\nu, \nu) = -(1/4)\nu^{\mathsf{T}}AA^{\mathsf{T}}\nu - b^{\mathsf{T}}\nu$$

Example: Least squares

 $\min x^{\mathsf{T}} x$
s.t Ax = b

Dual Function

$$L(x,v) = x^{\mathsf{T}}x + \nu^{\mathsf{T}}(Ax - b)$$

$$\nabla_x L(x,\nu) = 2x + A^{\mathsf{T}}\nu = 0 \Rightarrow x = -(1/2)A^{\mathsf{T}}\nu.$$

Plug into L to get g:

$$g(\nu) = L((-1/2))A^{\mathsf{T}}\nu, \nu) = -(1/4)\nu^{\mathsf{T}}AA^{\mathsf{T}}\nu - b^{\mathsf{T}}\nu$$

Lower Bound Property

$$p^{\star} \geq -(1/4)\nu^{\mathsf{T}}AA^{\mathsf{T}}\nu - b^{\mathsf{T}}\nu \quad \forall \nu$$

Deriving Waterfilling Expression

• Form Lagrangian by relaxing $P_j > 0$:

$$\min_{P_j} \sum_{j} -B \log \left(1 + \frac{P_j}{\bar{P}} \gamma_j \right) p(\gamma_j) \to f_0(P_j) \\
\frac{\sum_j P_j}{\bar{P}} \le 1 \Rightarrow \sum_j P_j - \bar{P} = 0 \to f_j(P_j)$$

Deriving Waterfilling Expression

• Form Lagrangian by relaxing $P_j > 0$:

$$\min_{P_j} \sum_{j} -B \log \left(1 + \frac{P_j}{\bar{P}} \gamma_j\right) p(\gamma_j) \to f_0(P_j)$$
$$\frac{\sum_j P_j}{\bar{P}} \le 1 \Rightarrow \sum_j P_j - \bar{P} = 0 \to f_j(P_j)$$

Solve
$$\partial L/\partial P_j = 0$$
 for P_j/P . Let $\gamma_0 = \lambda P$.

Deriving Waterfilling Expression

• Form Lagrangian by relaxing $P_j > 0$:

$$\min_{P_j} \sum_{j} -B \log \left(1 + \frac{P_j}{\bar{P}} \gamma_j \right) p(\gamma_j) \to f_0(P_j) \\
\frac{\sum_j P_j}{\bar{P}} \le 1 \Rightarrow \sum_j P_j - \bar{P} = 0 \to f_j(P_j)$$

2 Solve $\partial L/\partial P_j = 0$ for P_j/P . Let $\gamma_0 = \lambda P$.

Hint: Write Lagrangian in terms of P_j , \bar{P} , γ before taking derivative.

Extensions of waterfilling idea

Can be applied to any system where the sum of logarithms need to be optimized with a sum power and positivity constraints

Examples

- Continuous fading states
- Time-invariant frequency selective fading channel waterfilling over frequency
- Time-varying frequency selective fading channel waterfilling over time and frequency (may not be optimal)
- MIMO channels waterfilling over spatial diversity

Block fading vs. frequency-selective fading

Block Fading:

$$\sum_{\gamma_i \ge \gamma_0} \left(\frac{1}{\gamma_0} - \frac{1}{\gamma_i}\right) p(\gamma_i) = 1$$

Frequency-selective Fading:

$$\sum_{\gamma_i \ge \gamma_0} \left(\frac{1}{\gamma_0} - \frac{1}{\gamma_i} \right) = 1$$

Finding the optimal power allocation

• Assume
$$P(\gamma_i) > 0 \quad \forall i$$

2 Solve for γ_0 :

$$\frac{1}{\gamma_0} = 1 + \sum_i \frac{p(\gamma_i)}{\gamma_i} \qquad \text{or} \qquad \frac{N}{\gamma_0} = 1 + \sum_i \frac{1}{\gamma_i}$$

(a) If any $P(\gamma_i) < 0$ assume the $P(\gamma_i)$ for lowest γ_i is zero and repeat previous step

• Given
$$\gamma_0$$
, can compute $P(\gamma_i)$ and C .

"Waterfilling" interpretation of the solution $P(\gamma_i)$

Suboptimal power adaptation schemes

Power adaptation buys you little in practice.

Other Ideas

- Fix TX power but vary rate
- Channel inversion: Received SNR is constant
- Truncated channel inversion: Received SNR is constant, and do not use channel if gain is too low

Channel inversion in more details

Channel inversion

- If target SNR is σ , transmit at $\frac{\sigma}{\gamma}$
- Expected power constraint gives $\sigma = \frac{\bar{P}}{E[1/\gamma]}$

• What happens for Rayleigh fading?

Channel inversion in more details

Channel inversion

- If target SNR is σ , transmit at $\frac{\sigma}{\gamma}$
- Expected power constraint gives $\sigma = \frac{P}{E[1/\gamma]}$
- What happens for Rayleigh fading? $E[1/\gamma]=\infty$

Truncated channel inversion

- Do not use the channel if $\gamma < \gamma_1$ (outage)
- If target SNR is σ , transmit at $\frac{\sigma}{\gamma}$

• Expected power constraint gives $\sigma = \frac{\bar{P}}{E_{\gamma > \gamma_1}[1/\gamma]}$

Question

How does capacity under truncated inversion behave with increasing outage probability ?