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1 Introduction

This paper examines the probem of statistical modeling of fleet data. In other words, we hope to
develop a tractable methodology for deriving a statistical model given a dataset that can be naturally
divided into several similar groups (this notion will be made more rigorous later). This type of data
might be natural for several intelligent energy problems of interest. We will consider a formulation
that is extremely relevant to statistical monitoring, and can be applied to fleets of units (perhaps
transformers, turbines, or other high-value equipment), each with its own data set. In this work, the
performance modeling of a fleet of gas turbines is considered for the sake of example, but the reader is
encouraged to consider other relevant applications.

1.1 Literature Review

Relatively little work has been in the area of fleet modeling. This paper follows the line of thought
started in [1], [2], and [4]. The authors of [1] focus on linear regression, and specifically on choosing
optimal regressors and formulating a real-time anomaly detection approach. In [2], these ideas are
expanded to include drift anomalies and and explicit algorithm for distributed computation of the
model parameters. In [4], the auther derives an update equation for the model parameters in real-
time. Work in relevant areas includes [5], in which regression models are considered for arrays of data.
Machine learning using a matrix normal distribution is discussed in [10]. Methods using PLS regression
are related to the ideas presented below. A good summary of PLS is given in [8].

Statistical monitoring of gas is explored in [6] and [3], using a case-based reason method. Two
standard approaches for anomaly detection in gas turbines are involve using a bank of Kalman filters
or neural networks. A good reference for both is [9].

1.2 Dataset

The data set of interest is assumed to have the following hierarchy:

e Unit It is assumed that we have data describing IV units, of similar design, from which we would
like to learn about the performance of these units. The available data is divided into N subsets,
with one subset for each unit.

e Time Each of the N subsets contains 7' data points. Although we will use the interpretation that
the points are ordered and temporal, this assumption is not necessary. Furthormore, we assume
that each unit has exactly T' data points; this is done purely for convencience, and there is a
natural and obvious generalization to cases in which the individual units each have a different
number of data points (in this case, we replace the T in (1) with T3).



e Input/Output Each data point is divided into input and output data, i.e. the system has an
input output structure that is known a priori.

e Multivariate data points Each output data point y;(¢) and input data point x;(¢) is a vector in
R™ and R™ respectively.

Therefore, we can summarize the data structure compactly by writing

N
i=1
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We will also use the notation X; € R"*T" and Y; € R*T to denote the data subsets {x;(t)}_; and
{z;(t)}L,, respectively, in matrix form.

1.3 Objectives

We propose a regression model of the following form:
yi(t) = Bix;(t) + vi(t) (2)
with the following variables:
o y;(t) € R™ is the (known) output of unit ¢ at time ¢.
e z;(t) € R"™ is the (known) exogenous input for unit ¢ at time ¢.

B; € R™¥ is the (static, linear) model for the i unit. The term v;(t) € R™ represents noise and
model mismatch, and we would somehow like to choose each B; such that each v;(t) is small with
respect to some meaningful norm. Furthermore, we would like to know about the covariance of v;, for
all ¢, which may be useful, for example, in classifying additional data as normal or anomalous.

Furthermore, we would like our approach to include the intuitive idea that the all the units are
similar, i.e. B; should be similar to B;, for all j # 7, and the covariance of v; should be similar to the
covariance of v, for all j # 1, if, of course, these ideas are congruent with the actual data.

Finally, we desire that the approach be computationally feasible, meaning that the (globally) opti-
mal solution can be computed with reasonable (and certainly polynomial) computational complexity.

2 Regression Model

We propose a regression model of the following form in (2) making further definitions for the following
random variables:

e v;(t) € R™, where v;(t)|S ~ N(0,5) is 1.i.d., is the residual for unit i at time t. S € S'? is the
(unknown) covariance of the residual, for all units.

e B; € R™* where B;|Birue ~ .k (Btrue, S/, I) is ii.d., is the static linear map for unit . The
distribution N(-,-,-) denotes the matrix normal distribution, and in this case, simply means that
each column of B; is normally distributed, where the mean is the corresponding column of By e,
and the covariance is S/a. a is a tweak parameter , and is assumed to be known a priori.

e No prior information is given about Biyye or S.



We seek to estimate the parameters Bypye, S, B;, forall ¢ = 1,..., N. In keeping with a typical regression
problem formulation, we use the MAP method to estimate desired parameters. To do this, first we
consider the density functions of the random variables of the problem, B;, and v;(t):

B L (T
f( 2(t)’BzaS> (27T)§|S‘% p< 2<yz(t) B; z(t)) S (yz(t) B; z(t))>
1 1 _
f(Bi’Btrue) = (27-‘-)nk/2|5"n/2 €Xp (—2tl“ ((Bz - Btrue)TaS I(Bz - Btrue))> (3)

The log likelihoods are, neglecting additive constants,

T
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We would like find the values of Bi, ..., BN, Btrue, and S which minimize the negative log likelihood

function (this is equivalent to maximizing the likelihood function). Here we use X and ) to represent
X1,...,Xn and Y7, ..., Y. Using the law of total probability,

¢(B1, ..., BN, Birue, S|X,Y) = —log f(X,Y|B1, ..., BN, Btrue, S)

N
— —log (H f(vi(t)|Bi, .., BN, Birue, S)>
i=1
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We have omitted the terms f(Biue) and f(S), as there is no prior information about Byue or S.
Distributing the logarithm:

T
Z( 1og f(Bi| Birue, )—Zlogf(vi(t)\Bi,S))
t=1

Plugging in the log-likelihoods from (3) and simplifying:
N
= NTlog|S|+ ) (a tr ((B; — Birue)” S™H(Bi — Bue)) + tr (Y — BiX;)TS™H(Yi — BiX;)) ) (4)
i=1
Although this function is not technically convex in its current form (in the variables B; Biye and S),

it is convex in the variables S™'B;, S™!Birue, and S™1, and a general solver could easily be used to
find the solution. A simple analytical solution exists, however, which we derive below.

2.1 Normal Equations and Solutions

In this section, hope to analytically find the minimizers of (4). We will make heavy use of matrix
calculus, and specifically, differentiation of scalar functions of matrices (functions f : R — R™*"™),
where
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We perform partial minimization by using the familiar procedure of setting the partial derivative of a
function equal to zero, which, in the matrix-valued case, amounts to setting all elements of (5) equal
to zero. Performing this procedure for all variables in the problem is in fact equivalent to solving the
KKT conditions of the problem (4).

2.1.1 Unit Model

Differentiating with respect to B;,

at
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Setting this equal to zero yields
YiX! = a(B; = Buue) + BiXi X[
Bi = (YiX] 4+ aBie) (ol + X; X1) ™ (6)

The above equation is very similar to the normal equations for linear regression, with the addition of
the regularization term B; — Biyye. Note that (8) and (6) are both independent of S.

2.1.2 Average Model
Differentiating with respect to Biye,

ol
aBtrue

N
= 25" ' Birue — Z 25~ 1B;
=1

Setting this equal to zero, the MLE estimate of Biye is

N

-/B\true = (1/N)ZB7, (7)

=1

This has the intuitive interpretation of being the elementwise sample mean of all the individual unit
models. Setting B; = B;, we obtain

N
Etrue = (1/N) Z(YleT + aBtrue)(aI + XZXZT)_I
i=1
N N -1
Birwe = (1/N) (Z K’Xf(aIJrXiXiT)_l) <I — (a/N) Z(OJ-FXinT)_l) (8)
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2.1.3 Residual Covariance

Finally we differentiate with respect to S:

N
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By setting equal to zero, we obtain
T
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2.2 Algorithm

The following is hardly even an algorithm, given its simplicity.

1. Compute Etme from (8)
2. Compute B; from (6)
3. Compute S from (9).

There are a couple of observations to make here. First, the value a adjusts how much coupling there is
between the units, i.e. it sets the “strength” of the prior on B;. This value can be adjusted to achieve
desired performance.

Second, if we are only interested in computing Etrue and Bj;, the algorithm is very amenable to
a distributed setting. Consider the example of a distributed fleet of turbines, with a centralized
monitoring center. To compute Etrue, the centralized monitoring center needs only Y;X; and XiXiT ,
for all ¢, and not the entire dataset. This means that the monitoring center must be able to recieve
N (ni—knxny) double-precision numbers, and return B\true (consisting of Nn,n, doubles) to the turbines
in the fleet. This amounts to a very reasonable bandwidth. Ej can be computed locally. Step 3 would
of course be much more difficult to carry out in this context.

3 Covariance Model

The above formulation may be suitable for some applications, but what if we are interested in knowing
the residual covariances for each seperate unit? This is of concern for our anomaly detection problem;
perhaps the turbines are much more different from each other than we originally expected (perhaps
the turbines are operating in significantly diverse climates), and each has a radically different residual
covariance structure. We would like to develop a formulation that is robust to these differences. Now
consider the model (2) with the following additional definitions:

e v;(t) € R™, where v;(t)[S; ~ N(0,S;) is i.i.d., is the residual for unit ¢ at time ¢.

e S; € S, where Sj|Strue ~ W(Strue/p, p) is i.i.d., is the covariance for unit i. The distribution
W(-,-) is the Wishart distribution (if we take a random matrix Z € R™*" where the columns
of Z are normally distributed, zero-mean i.i.d. random vectors with covariance ¥, then ZZ7 ~
W(2, v); this is therefore a natural prior for a covariance matrix). p € R is a tweak parameter,
and is assumed to be known a priori.

e We have no prior information about B; or Strue.
We seek to estimate the parameters Siue, and B; and S;, for all i = 1,...,N. Again we use the
maximum a posteriori probability (MAP) method to estimate desired parameters. To do this, first we
consider the density functions of the random variables of the problem, S;, and v;(t):
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The log likelihoods are, again ignoring positive constants
log f(vi(t)| By, 8) = —(1/2)1og S| — (1/2)(yi(t) — Bii(t))" S~ (yi(t) — Bizs(t))(1)
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We would like to maximize the log likelihood function. Using the law of total probability,
E(Sla ceey SN7 Bl) ceey BN7 Strue|Xy y) = - 10g f(Xa y|517 ceey SN) Blv ceey BN, Strue)
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As before, we ignore the terms f(Sie) and f(B;). Distributing the logarithm:

T
= Z ( logf S |Strue Zlog f(’Ul(t)S“Bz)>
t=1

Plugging in the log-likelihoods from equations (10) and simplifying:

N
= Nplog |Serue| + Y (ptr SpneSi) + (T +n+ 1 —p)log|Si| + tr((Y; — B X;) 'S H(Y; — BZ-XZ-)))
i=1
We need to make the change of variables, S, L—p, LTL =S !  and Ez =S5; 'B;.
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The variables over which we optimize are P;, L, and B;. This is convex for 14+ n+ T > p, which is
reasonable, because in many problems of interest, T is very large.

3.0.1 Proof that (11) is convex

The function ¢(L, P;, Bi\X ,Y) is jointly convex in all its variables. It suffices to show that each term
of the sum is convex in its variabls:

e Consider —Nplog|LTL| = —Nplog(|LT|-|L|) = —Np(log|L| + log|L|) = —2Nplog|L|. The
logarithm-determinant function is concave, so its additive inverse is convex.

e Consider ptr(LTP L) = pZ?Zl(Lej)TPi_l(Lej), where the e; are the unit vectors. This is the
sum of matrix fractional functions, and is convex in both variables [Boyd pg. 76].

e Consider —(14+n+T—p)log|P;|. The logarithm-determinant function is concave, so for 14+n+17 >
p, this is convex, and for 1 +n + T < p, it is concave (for 1 +n + T = p, it is zero).

e Consider tr((B;X;)" P, ' B;X;). Again, the matrix fractional function is convex.

3.1 Normal Equations and Solutions

Because (11) is convex, we could use a generalized solver to compute the solution. However, we can find
a simple method to compute the global optimum, and gain some intuition into the problem, by using
the solution outlined in this section. We use the same method as before: using partial differentiation
to compute the normal equations, which can be solved interatively. This is analogous to a coordinate
descent method, except in this case, the coordinates over which we optimize at each iteration is matrix
valued.



3.1.1 Average Residual Covariance

Differentiating with respect to L, we have, from [7],

ol al
or = ~2Np(Lh) —|—pi§:1 2P7'L

where 1 denotes the pseudoinverse. We assume L is invertible and set this equal to zero to obtain
o N
('Lt =1N> P (12)
i=1
Making the change back to the natural variables yields §tme =1/N sz\i 1 Si.

3.1.2 Residual Covariance

Differentiating with respect to P;,

ol - -
o5 = —pP'LLTP' — (14 n+T—-p)Pt+ VY — P 'B X, X! B P~*
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Changing back into the natural variables and setting equal to zero gives:
0= —pSiSieeSi — (1 +n+T —p)S; + YY" — BiX; X BI (13)

If we consider another change of variables:
e QU =YY" - B X; XIBI
e A = —(1/2) A +n+T —p)I
e BM =7
o R = (1/p)Siue

Then (13) can be solved as an algebraic Riccati equation (a well-known matrix quadratic equation
with form ATX + XA - XBR™'BTX 4+ Q = 0), which can be solved cheaply.

3.1.3 Unit Model

Differentiating with respect to BZ-,

¢ ~
or _ 2P B X X! - 2vix}

i

Changing back to the natural coordinates and setting equal to zero gives

VX! = B;X;xF (14)

3.2 Algorithm

The following algorithm can be used to obtain S;, Strue, and B; for all ¢

1. Compute B; from (14)

2. Initialize S; and Sirye.

3. Compute S; from (13)

4. Compute §tme from (12).
)

. Check the variables have converged. If so, stop. If not, go to step 3.



4 Simulation

In order to test these two formulations and briefly show their relative strengths,
Data were generated according to (2), with

e z;(t) € R" z;(t) ~ N(0,%;), i.i.d. the (known) input of unit ¢ at time ¢.

e v;(t) € R™, vi(t) ~ N(0,S;), i.i.d., is the residual for unit ¢ at time ¢.

B; e R"F B; ~ .o (Btrues Si, I) is the static linear map for turbine 4.

Si ~ W(Strue/p, p) is the covariance of the residual, with p degrees of freedom.

1 05 025 0
s _ |05 1 05 0 g _Jor ool
*7 1025 025 1 0 e = 10.01 0.001
0 0 0 0.001
—29.62 —29.36 1 0.0733
Buwe = 100314 0.0385 0947 —9.51><1o—5] r=100 N=50 " p=10 o=l

The data for By was obtained from [6] As a way of measuring the efficacy of the two different
formulatioss, we plot ||.S; — §1H the distance between estimated unit covariances, and the actual unit
covariances, for all 7, and we do similarly for ||B; — Elﬂ The norm used in this case was the spectral
norm (the Frobenius norm was avoided because it has a statistical interpretation). The results are
shown in figures 1 and 2, and are compared with a naive approach, in which the all data is pooled
together, and a single model and covariance is computed for the entire fleet. We sce that | B; — B;| is
large for both the covariance model and the naive model, but for the regression model it is low. Also,
1S — Sy|| is large for both the regression model and the naive model, but for the covariance model, it
is low. This reflects the fact that the covariance model is the only model that takes individual unit
covariances into account.



Figure 1: The error ||S; — Sj|| vs. i, for the regression model (green), the covariance model (blue), and
the naive model (red)

Hodel Errar

Figure 2: The error || B; — By|| vs. i, for the regression model (green), the covariance model (blue), and
the naive model (red)

4.1 Future Work

System identification represents the first, and possibly most important, step towards a feasible and
practical anomaly detection methodology, and we believe the algorithms described above present sound
approach to extract a system model from a dataset. However, the algorithms described in this paper,
and the dataset that used to test them were, of course, both products of the same reasoning. A real
test of the efficacy of these algorithms can only be done with real data, from, for example, a real fleet of
gas turbines in operation. Because of the importance of using real data for validation, we are actively
seeking sources of such data.



There is a second naive formulation, namely that of treating each unit individually, and ignoring
the rest of the fleet data while making estimates of that unit’s parameters. It remains to be shown
that there are problems for which our two formulations are superior to this second naive formulation
(although the author strongly believes this is true). Unfortunately, the brevity of the current academic
term has prevented any such simulation from being realized.

The main question that remains to be answered is whether or not there exists a solution the
the problem of estimating the unit models and the residual covariances simultaneously with prior
parameters for both models and covariances. For the time being, it appears that the answer is “no,”
but this answer is not definitive.
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