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Problem statement
With the  increase  in  network  traffic,  the  packet  switches  operate  at  high  speed  to  meet  the  high 
throughput rates. This fact, along with the increasing circuit densities make power a significant factor  
in the operation of the packet switches. When large number of packets are received and routed, the 
power  required  to  operate  the  switches  increases  significantly.  Power  consumption  is  limited  by 
physical  constraints  within the  switch  as  well  as  the  customer  and industry  standards.  Scheduling 
algorithms that determines the packet to service must also balance throughput and power consumption. 
This necessitates power and delay aware scheduling algorithms for input queued packet switches. 

Motivation 
In 2007, United States Environmental Protection Agency (EPA) predicted that electricity use of data 
centers would get doubled in 2010. 

Figure 1. US EPA prediction of electricity use of data centers 

Recent study by Professor Jonathan Koomey, Department of Civil Engineering, Stanford shows  that 
electricity used by data centers worldwide has increased by 56% from 2005 to 2010. Electricity used by 
global data centers in 2010 accounts for 1.1-1.5% of total electricity use. In US , it is about 1.7-2.2%. 



Several techniques are being developed and applied at  system and circuit level to reduce the power 
consumption of the servers and storage elements. When the load is low, the devices can be turned off or 
operated  in  low  power  modes  to  reduce  the  power  consumption.  These  kind  of  techniques  have 
controlled the trend in electricity use that would have doubled otherwise.

Packet switches are the next major components where the power consumption is increasing with the 
increase in network speed, traffic demands and circuit density. The more the load is, the more is the 
power consumption. There could be factors such as leakage or static power contributing to this. In this 
work, we focus on the increasing dynamic power of packet switches. 

Scheduling algorithm in packet switches determine the packets that can be serviced at a time. To reduce 
average power consumption,we can defer to service a packet at a time compromising performance. So, 
the  scheduling  algorithms must  also  strike  balance  between performance  and  power  consumption. 
Hence  we require  power aware  and delay  aware scheduling  algorithms that  can  provide  trade off 
between  performance and power. 

Literature survey
The power and delay aware scheduling algorithm developed by Professor Daniel O'Neill et al. in (1) 
based on Linear Quadratic Regulation(LQR) selects service vector that best aligns with the pending 
switch backlog and then scales the switch performance to optimize the average power delay tradeoff for 
the switch. This two step algorithm sequence is repeated for every packet transfer period. 

As explained in (1),the scheduling algorithm aims to minimize the two terms- power consumption and 
packet delay.The power consumption of the packet switch is P = (1/2)αCV2  f , C is the capacitance 
driven by the device, V is the voltage supply, f is the device clock frequency, α is the activity factor of 
the device. 

Power consumption of a switch can be adjusted by varying the clock frequency of the device, varying 
its voltage supply and powering up or down the portions of the switch as necessary. Changing the 
supply causes a quadratic cost in power, while changing frequency or powering up/down causes linear 
cost. In general, if the cost is F(st) as a function of service vector st , the power cost is the summation of 
(st)F(st) over period of time. 

Packet delay is measured by the backlog cost. A packet arriving in a longer queue will have a shorter  
delay than the packet arriving in a shorter queue. If the backlog vector is xt  , then the backlog cost is the 
summation of  (xt)F(xt) over period of time. 

Hence scheduling algorithm intends to minimize the following function,
J(xt) =  Σ   ( (st)F(st) + (xt)F(xt) )

In this work, we improvise the scheduling algorithm through reinforcement learning concepts. We need 
a scheduling algorithm that would dynamically learn from the load in the switches and minimize the 
average cost function. 



Switch model
Consider  a  N  X  N  switch  that  is  composed  of  Line  Card  Processing  units(LCP),  virtual  output 
queues(VOQ) and crossbar switching fabric. 

It has N LCPs, one at each input. Each LCP has N VOQs one for each output. So, there are N2 virtual 
output queues(VOQ). VOQs are defined as VOQi,o where i refers to input port and o refers to output 
port. Each color in the VOQs in Figure 2 indicate the type of a packet. 

Figure 2. 2 X 2 switch model

Switch follows the crossbar constraint - no output simultaneously receives packets from more than one 
input VOQ and no input simultaneously transfers packets to more than one output. The packets that can 
be serviced at time t must follow this constraint. 

Packet servicing is done at the beginning of time slot t , while packet arrivals occur at the end of time t. 

Backlog state of the switch at time t is defined as the number of packets in each VOQ denoted as

xt = [xt
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Packets are serviced at the beginning of a time t denoted by service vector st = [st
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Packets arrive in the VOQs at the end of time t denoted by arrival vector at = [at
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t
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t
Q] .

Backlog state of the switch a time t+1 is determined by the linear equation  xt+1 = xt – st +  at .

Cost functions
Power and backlog cost equations defined in (1) are extended here.

Power cost in servicing packets at time t is quadratic and denoted by (st)TR st  , R is the power cost 
matrix.  
   

Backlog cost at time t is quadratic and denoted by (xt)TQ xt , Q is the identity matrix. The delay for a 
packet is proportional to the number of packets in the queue.   

Total cost = Σ   ( (st)TR st + (xt)TQ xt ). 

We need a scheduling algorithm that minimizes the average cost over a period of time. 
The algorithm must continuously learn from the load in the switches and minimize the average cost. It  
can defer or service a packet at time t to minimize the average cost. 



Approach
Reinforcement Learning
Reinforcement learning will be ideal for this problem. The agent interacts with environment and learns 
through consequences of actions-reward. An environment is represented by Markov Decision Process 
(MDP) consisting of four tuple (S,A,R,P), where S is state space, A is action space, R is reward model 
and P stands for transition model.

At time t the environment is in state  xt Є S, the agent takes an action  at Є A and receives a scalar 

reward rt  .The agent transitions to the next state xt+1.

The agent and the environment generate a sequence of  x0,a0,r0,x1,a1,r1,x2,a2,r2... The goal of RL 

agent, is to find a near optimal policy in a such a way that if the agent follows that policy from any 
given state then its sum of future reward is maximum .

Q-Learning
It  belongs to  the  class  of  Temporal  Difference  methods.  It  is  a  simple,  sample based,  online  and 
incremental reinforcement learning method. It does not require access to the model of the environment 
unlike dynamic programming. 

It  uses  Q values  defined as  Q(x,a)=E[r0 + γr1+γ2r2+···],  γ  is  discount  factor that  weighs  future 

rewards. The agent takes greedy actions mostly but also does exploration based on exploration policy 
to visit unseen states.

Algorithm 
1.Initialize Q arbitrarily for all state-action pairs. The initial values can be set optimistically.
2.Choose proper (small) positive values for  α

t
 .

3.Set discount factor γ , set it very close to 1, e.g. .99. 
4.Repeat: 
5.Take at from xt according to a policy , and arrive at xt+1. 

6.Observe reward rt.

7.Update Q-function for sample (xt, at) 

     Qt+1(xt, at) = Qt(xt, at)+  α
t
 [rt +γmaxa'Qt(xt+1, a' )-Qt(xt, at)]

Power cost Estimation

We defined the power cost as (st)TR st . To measure power cost, we need to find the power cost matrix 
R.

Network processors are programmable chips like general purpose processors but they are optimized for 
packet processing. They are programmable as a CPU but as fast as an ASIC.They perform functions 
such as pattern matching,key lookups, computation,bit manipulation,queue management etc. They are 
used in switches, routers, firewalls, VOIP bridges.

Our approach is to analyze a state of art network processor, its various design blocks and arrive at the  
values  for  cost  matrix  R.  We  have  considered  the  Netlogic's  network  processor  XLP832  for  our 
analysis. Figure 3 represents the block diagram of XLP832. 



XLP832 Architecture
XLP832 is a highly scalable network processor that supports key functions such as wired and wireless 
security,networking,storage,data center acceleration, load balancing and other acceleration engines. It is 
designed using 40 nm technology and offers processor core frequencies from 500 Mhz to 1.66 Ghz. It  
can  support data rates from 10 – 160 Gbps. 

Figure 3. Netlogic XLP832 Block diagram
Processor core
The chip supports 8 cores, each core supports out of order execution, quad issue, 4-way simultaneous 
multithreading. The core architecture implements MIPS 64 Release -II ISA. 

Multithreading enables processor to hide many of the clock cycles lost to data dependencies and other 
pipeline hazards by using instructions from other threads. When running single thread code, any thread 
can issue up to 4 instructions per cycle. When all the four threads are active, the processor acts like 4 
single issue CPUs. 

Figure 4 explains the various design blocks of  the processor.  The core has deeper 12 stage instruction 
pipelines. Apart from caches, it is composed of Instruction fetch,decode unit, seven functional units,  
load/store,retire unit , branch predictor, thread scheduler,rename registers and instruction queues. The 
thread scheduler determines which four instructions to fetch from which thread and then feeds the 
instructions into the queues. 

Each  ALU  along  with  FPU  has  its  own  instruction  queue.  Two  ALUs  execute  simple  integer 
instructions  and  share  their  queue  with  load/store  units.  Another  ALU  executes  simple  integer 
instructions and branch instructions. The fourth ALU executes complex instructions such as multiply 
and divide. FPU is not used in the networking operations. 

The core has 256 integer registers while there are 32 architectural integer registers. Renaming registers 
are  helpful  when a newer instruction reuses an architectural  register  that  is  still  being used by an 
instruction in flight, renaming registers. The retire unit can support up to 100 instructions at a time. 

With deeper pipelines, mis-predicted branches can inflict a greater penalty in flushing the pipeline. To 
overcome this, G-share and bimodal branch predictors are used. It also supports extended TLB and 
hardware page walker. 



Figure 4. CPU block diagram

Ring Network 
The chip has 3 rings- CPU ring connects the CPUs to each other, memory ring connects the CPU to 
memory controllers, I/O ring connects the CPU to I/O controller and acceleration engines. The rings 
are bidirectional and run at the core clock frequency. They support 64 bytes of data transfer per clock 
cycle and 40Tbps of bandwidth. 

Network Accelerator Engine
This engine performs load balancing, it classifies packets depending on the processing required and 
allocates them to CPU on round -robin basis or by routing traffic to the CPU with the lightest load. It 
also does packet parsing, checksum generation and verification,TCP/IP/UDP checksum on both ingress 
and egress and TCP segmentation offload. It supports up to 40 Gbps of packet throughput. This engine 
is implemented using many(more than 40) 32 bit MIPS  cores.

Security or cryptography engine
This engine provides 40Gbps of encryption/decryption. It is implemented using 32 bit MIPS core and 
cryptography cores. This engine is similar to the AU1550 security network processor developed by 
Netlogic. It operates at low frequency and supports special purpose logic or instructions for processing.

Packet Ordering Engine
This engine ensures packets are transmitted in the same order as received within a single flow while 
enabling simultaneous processing across multiple threads. This is also implemented using configurable 
cores. 

DMA and storage acceleration/Deflate engine
An 8-channel DMA and storage acceleration engine with RAID 5 and RAID 6 are supported. This 
engine supports 10 Gbps of compression/decompression



Memory hierarchy
It supports MOESI coherent 3 level cache architecture- dedicated 64 KB I cache, 32 KB L1 D-cache, 
512 KB  8 way L2 and 8 bank 16 way 8 MB L3. The chip has 4 on chip 72 bit  DDR3 memory 
controllers supporting DDR3 1600 with 51.2 GB/sec bandwidth. 

Packet flow

Figure 5. Packet flow in XLP832 chip

The packet enters the chip through I/O interface and reaches Network Acceleration and DMA engine. 

While the DMA engine stores the packet in main memory, network acceleration engine parses the 
packet and determines its class and accordingly assigns it to a CPU for processing. Network accelerator 
also does checksum verification of the packet. The packet is stored in the main memory so that cores  
and acceleration engines can access it. 

Network accelerator engine communicates to the CPU to start processing through I/O and CPU ring. 
The communication occurs through messages that carry packet information such as address where the 
packet is stored in main memory. This information is referred to as descriptors. All engines and cores 
access the packet through these descriptors and they communicate with each other through messages 
via rings. 

The CPU fetches the packet from memory and processes it. For packets such as video that require 
encryption/decryption or compression /decompression, it invokes the security engine through rings. 
The security engine accesses the packet and performs encryption/decryption.  It  then communicates 
back to the core through messages. 



After  completing  its  processing,  core  communicates  to  the  network  accelerator  engine.  Network 
accelerator performs checksum verification and provides control to the packet ordering engine. 

Packet  Ordering  engine  ensures  that  packets  that  entered  the  chip  before  the  current  packet  are 
transmitted and then transmits this packet through DMA engine. 

Power Calculation
Three types of packet are taken into account for this work and the following are the types and sizes of 
the packets,

• Ack – 48 bytes
• Data – 512 bytes
• Video – 1500 bytes

All these packet types undergo the packet flow discussed except that only video packet may require 
encryption/decryption.

CPU 
The functions performed in the core are header check and bit manipulation in the payload. To perform 
these operations, the instructions required would be load, arithmetic and stores. Considering the packet 
sizes, the number of  instructions required for this processing is calculated. 

The relative power consumption of every block in the core is estimated so that power consumption in 
executing a ALU or load/store instruction can be determined. ALU complex and FP units will not be 
required for our  processing.  Using these values and the  number of instructions  required for  every 
packet, power consumption for a packet processing is calculated. 

Figure 6. Power calculation for CPU

Security engine
This processing is required only for video packets. This engine is similar to AU1550 security network 
processor that consumes 500 mW/400 Mhz. Using this power consumption and data rate of 40 Gbps, 
the power consumption to process video packet of size 1500 B is calculated.  

Figure 7. Power calculation for Security engine 
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Memory hierarchy
Power required per access at various levels are estimated which in turn is used to find power per byte 
access. This value is used to determine the power consumption in accessing a packet from memory. 

As we move to higher levels of memory hierarchy such as L3 and main memory, memory latency is not  
so critical and so less sophisticated memory cells are used that would in turn consume less power.  

Values from Freescale and Micron data sheet are used to extrapolate the values shown in Figure 8.  
Values highlighted in yellow are 'control knobs' in the calculation. They can be changed when required. 

Figure 8. Power calculation for caches and memory 

Network Accelerator /Packet Ordering engine
Small in order 32 bit MIPS cores used in these engines consume power in the order of 100mW/1Ghz. 

I/O ring
From Freescale data sheet, bus of width 106 operating at frequency of 100 Mhz with average transition 
of 2.7 Mhz consumes 17.8 mW. These values are extrapolated to obtained the power consumption of 
the I/O ring that can transfer 64bytes per clock. Assuming that it can transfer data on both edges of  
clock, the bus width is 256. 

Figure 9. Power calculation for I/O ring

Final results
Design  units  that  have  same  power  consumption  for  all  packets  such  as  Network  accelerator 
engine,packet ordering engine, rings are not included in the calculation. 
Power consumption of DMA engine and memory controller are assumed negligible.

There are various control knobs in the calculation such as number of column elements in a row of 
DRAM, bytes/access, multi-issue count and frequency of the core etc. With these knobs, any change in 
the configuration or the values used for extrapolation can be easily updated.
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Figure 10. Total power consumption for packets 

From the final power consumption values calculated above, we can see that memory accesses dominate 
the power consumption. 

The following is the total power consumption values of the packets,
Ack   -   2    W
Data   -  9.1 W 
Video - 16   W

Simulation
The simulation is done for 2 x 2 switch that has 2 input ports each with 2 VOQs and 2 output ports. 
Each VOQ can have at most 2 packets. No more than 2 packets can arrive at any time in a VOQ. 
Switch follows crossbar constraint  and can service  at  most  2  packets from each port  at  a time.  It 
supports 3 types of packets on each VOQ, but there can be be only packets of same type in a VOQ at a 
time.

MDP M= (S,A,R,P) that represents the switch is developed.  There are 2401 states, each can have 25 
actions.Transition probabilities that represent P are developed  based on the linear equation,

         xt+1 = xt – st +  at

Reward is represented by the total cost(power and backlog).The simulations are done in Matlab. 

Dynamic Programming
Dynamic Programming(DP) is applied to validate average reward from Q-learning. Unlike RL, DP 
requires knowledge of the model - transition probabilities,P and reward,R, for a given state and action.
RL needs to construct sample trajectories and learn from these samples while DP does not need to do  
this. P and R are not available in real world problems. 

Value iteration algorithm
• For a state-action pairs, given R and P , Q-value update for iteration t is 

   Qt+1(x, a) = ∑x'P(x'|x,a) (R(x,a,x') +γmaxa'Qt(x', a' ))

• It synchronously updates Q values for all state-action pairs in a iteration. 
• It repeats this until the Q values stop changing beyond a threshold.

Challenges 
There were several challenges in the simulation due to the stochastic environment and large state space. 
The key issue was the difficulty in reaching all the states in the state space and the following are the 
techniques employed to address it, 
1. Varying step size
     Large step size initially(exploration phase) and small step  size when the algorithm is about to 
converge(exploitation). 



2 .Exploration policy
    Greedy mostly, but also sometimes take random actions or actions that have not been hit frequently.
3. Transition probabilities
    There can be any arrival pattern(not exceeding 2 packets in a port) at a time. With large state space 
and uniform probabilities for all the arrival patterns, it is harder to find optimal solution. So, we have 
skewed transition probabilities such that it is possible to cover the entire state space. 

Results
It can be seen in Figure 11. that Q-Learning algorithm has converged closer to the optimal value found 
by value iteration algorithm. 

Figure 11. Simulation results of DP and RL
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