Statistical Modeling of Fleet Data

Nicholas Moehle ${ }^{1}$
${ }^{1}$ Department of Mechanical Engineering
Stanford University
Advisor: Dimitry Gorinevsky
Information Systems Laboratory
Department of Electrical Engineering
Stanford University
June 12, 2012

Introduction to Fleet Data

Consider the following problem:

- When GE sells a gas turbine, they offer a Monitoring and Diagnostics service
- GE has 1150 turbines currently being monitored, (and hundreds are the 7FA model) (Source: Orbit, Vol. 31)
- Data must be processed remotely (GE M\&D, Atlanta)

How do we (tractably) generate a model? How do we use this model to detect anomalies?

Review: Confidence ellipsoid \& exceedance monitoring

- Consider the ellipsoid $\left\{y \in \mathbb{R}^{2} \mid(y-B x)^{T} \Sigma^{-1}(y-B x) \leq \alpha\right\}$.
- Represents a confidence bound.
- If we know $y \sim \mathcal{N}(B x, \Sigma)$ in normal operation, then we use $B x$ and Σ for anomaly detection.
- Bx alone doesn't help us, need an accurate Σ.
- We will focus on finding B and Σ (x is assumed to be known).

What is fleet data?

Dataset is hierarchical:

- Unit: There exists N "units," so the data is divided into N subsets (indexed $i=1, \ldots, N$).
- Time: Each of the N subsets contains T data points (indexed $t=1, \ldots, T$).
- t interpreted as sample time.
- T is the same for each unit (i.e. each unit has the same number of data points).
- Input/Output: Each unit has an input output structure that is known a priori (input is $x_{i}(t)$, output is $y_{i}(t)$).
- Multivariate data points Each output data point $y_{i}(t)$ and input data point $x_{i}(t)$ is a vector in $\mathbb{R}^{n_{y}}$ and $\mathbb{R}^{n_{x}}$, respectively.
Therefore, we can summarize the data structure compactly by writing

$$
\left\{\left\{x_{i}(t), y_{i}(t)\right\}_{t=1}^{T}\right\}_{i=1}^{N}
$$

Objectives

We propose a regression model of the following form:

$$
y_{i}(t)=B_{i} x_{i}(t)+v_{i}(t)
$$

with the following known variables:

- $y_{i}(t) \in \mathbb{R}^{n_{y}}$ is the (known) output of unit i at time t.
- $x_{i}(t) \in \mathbb{R}^{n_{x}}$ is the (known) exogenous input for unit i at time t.
We want to choose B_{i} such that:
- each $v_{i}(t)$ has low covariance.
- B_{i} is "similar" to $B_{j}, \forall i \neq j$
- The distribution of $v_{i}(t)$ is "similar" to that of $v_{j}(t)$.

We want reasonable computational complexity.

Regression approach

Recall the assumption:

$$
y_{i}(t)=B_{i} x_{i}(t)+v_{i}(t)
$$

For this specific approach, further define:

- The residual:
- $v_{i}(t) \mid S \sim \mathcal{N}(0, S)$, i.i.d.
- $S \in \mathbb{S}_{+}^{n_{y}}$ is the (unknown) residual covariance.
- The unit linear model:
- $B_{i} \mid B_{\text {true }} \sim N_{n, k}\left(B_{\text {true }}, S / \alpha, I\right)$, i.i.d.
- $N(\cdot, \cdot, \cdot)$ denotes the matrix normal distribution. For us, for each column of $B_{i}, b_{i} \sim \mathcal{N}\left(b_{\text {true }}, S / \alpha\right)$.
- α is a weight, chosen a priori.
- No prior information is given about $B_{\text {true }}$ or S.

MAP estimation of parameters

We find of $B_{1}, \ldots, B_{N}, B_{\text {true }}$, and S which minimize the negative log likelihood function. Using the law of total probability,

$$
\begin{aligned}
& \ell\left(B_{1}, \ldots, B_{N}, B_{\text {true }}, S \mid \mathcal{X}, \mathcal{Y}\right)=-\log f\left(\mathcal{X}, \mathcal{Y} \mid B_{1}, \ldots, B_{N}, B_{\text {true }}, S\right) \\
& =-\log \left(\prod_{i=1}^{N} \prod_{t=1}^{T} f\left(v_{i}(t) \mid B_{1}, \ldots, B_{N}, B_{\text {true }}, S\right)\right) \\
& =\sum_{i=1}^{N}\left(-\log f\left(B_{i} \mid B_{\text {true }}, S\right)-\sum_{t=1}^{T} \log f\left(v_{i}(t) \mid B_{i}, S\right)\right)
\end{aligned}
$$

We have omitted the terms $f\left(B_{\text {true }}\right)$ and $f(S)$, as there is no prior information about $B_{\text {true }}$ or S (we can consider them to have improper priors).

MAP estimation of parameters

Plugging in the log-likelihoods and simplifying:

$$
\begin{array}{rl}
\ell=N & T \log |S|+\sum_{i=1}^{N}\left(\alpha \operatorname{tr}\left(\left(B_{i}-B_{\text {true }}\right)^{T} S^{-1}\left(B_{i}-B_{\text {true }}\right)\right)\right. \\
& \left.+\operatorname{tr}\left(\left(Y_{i}-B_{i} X_{i}\right)^{T} S^{-1}\left(Y_{i}-B_{i} X_{i}\right)\right)\right)
\end{array}
$$

- X_{i} and Y_{i} are data matrices
- constant terms are omitted
- Convex in the variables $S^{-1} B_{i}, S^{-1} B_{\text {true }}, S^{-1}$

Normal equations

The normal equations are found by differentiating w.r.t. the (matrix) variables. They are:

- Unit Model:

$$
Y_{i} X_{i}^{\top}=\alpha\left(\widehat{B}_{i}-B_{\text {true }}\right)+\widehat{B}_{i} X_{i} X_{i}^{\top}
$$

- Average Model:

$$
\widehat{B}_{\text {true }}=(1 / N) \sum_{i=1}^{N} B_{i}
$$

- Fleetwide Residual Covariance:

$$
\begin{aligned}
\widehat{S}=\frac{1}{N T} & \sum_{i=1}^{N}\left(\alpha\left(B_{i}-B_{\text {true }}\right)\left(B_{i}-B_{\text {true }}\right)^{T}\right. \\
& \left.+\left(Y_{i}-B_{i} X_{i}\right)\left(Y_{i}-B_{i} X_{i}\right)^{T}\right)
\end{aligned}
$$

Are we satisfied?

We chose $B_{i}, B_{\text {true }}$ and S to minimize:

$$
\begin{array}{rl}
\ell=N & T \log |S|+\sum_{i=1}^{N}\left(\alpha \operatorname{tr}\left(\left(B_{i}-B_{\text {true }}\right)^{T} S^{-1}\left(B_{i}-B_{\text {true }}\right)\right)\right. \\
& \left.+\operatorname{tr}\left(\left(Y_{i}-B_{i} X_{i}\right)^{T} S^{-1}\left(Y_{i}-B_{i} X_{i}\right)\right)\right)
\end{array}
$$

We wanted to encode the idea:

- each $v_{i}(t)$ should have low covariance. (Satisfied)
- B_{i} should be "similar" to $B_{j}, \forall i \neq j$ (Satisfied)
- The covariance of $v_{i}(t)$ should be "similar" to that of $v_{j}(t)$. (Unsatisfied)

Covariance approach

Recall the assumption:

$$
y_{i}(t)=B_{i} x_{i}(t)+v_{i}(t)
$$

For this specific approach, further define:

- The residual:
- $v_{i}(t) \mid S \sim \mathcal{N}\left(0, S_{i}\right)$, i.i.d.
- $S_{i} \in \mathbb{S}_{+}^{n_{y}}$ is the (unknown) residual covariance.
- The unit covariance:
- $S_{i} \in \mathbb{S}_{+}^{n}$, where $S_{i} \mid S_{\text {true }} \sim \mathcal{W}\left(S_{\text {true }} / p, p\right)$, i.i.d.
- $\mathcal{W}(\cdot, \cdot)$ is the Wishart distribution (for random matrix $Z \in \mathbb{R}^{n \times \nu}$, with columns of Z normally distributed, zero-mean i.i.d. random vectors with covariance Σ, then $\left.Z Z^{T} \sim \mathcal{W}(\Sigma, \nu)\right)$.
- $p \in \mathbb{R}$ is a (known) weight parameter
- We have no prior information about B_{i} or $S_{\text {true }}$.

MAP estimation of parameters

We find the MAP estimates of $S_{\text {true }}$, and B_{i} and S_{i}, for all $i=1, \ldots, N$.
Maximize the log likelihood function:

$$
\begin{aligned}
& \ell\left(S_{1}, \ldots, S_{N}, B_{1}, \ldots, B_{N}, S_{\text {true }} \mid \mathcal{X}, \mathcal{Y}\right) \\
& \quad=-\log \left(\prod_{i=1}^{N} \prod_{t=1}^{T} f\left(v_{i}(t) \mid S_{1}, \ldots, S_{N}, B_{1}, \ldots, B_{N}, S_{\text {true }}\right)\right) \\
& \quad=\sum_{i=1}^{N}\left(-\log f\left(S_{i} \mid S_{\text {true }}\right)-\sum_{t=1}^{T} \log f\left(v_{i}(t) \mid S_{i}, B_{i}\right)\right)
\end{aligned}
$$

As before, we ignore the terms $f\left(S_{\text {true }}\right)$ and $f\left(B_{i}\right)$.

MAP estimation of parameters

Plugging in the log-likelihoods and simplifying:

$$
\begin{aligned}
& =N p \log \left|S_{\text {true }}\right|+\sum_{i=1}^{N}\left(p \operatorname{tr}\left(S_{\text {true }}^{-1} S_{i}\right)+(T+n+1-p) \log \left|S_{i}\right|\right. \\
& \left.\quad+\operatorname{tr}\left(\left(Y_{i}-B_{i} X_{i}\right)^{T} S_{i}^{-1}\left(Y_{i}-B_{i} X_{i}\right)\right)\right)
\end{aligned}
$$

With change of variables, $S_{i}^{-1}=P_{i}, L^{T} L=S_{\text {true }}^{-1}$, and $\widetilde{B}_{i}=S_{i}^{-1} B_{i}$, this is convex for large T :

$$
\begin{gathered}
=-N p \log \left|L^{T} L\right|+\sum_{i=1}^{N}\left(p \operatorname{tr}\left(L^{T} P_{i}^{-1} L\right)-(T+n+1-p) \log \left|P_{i}\right|\right. \\
\left.+\operatorname{tr}\left(Y_{i}^{T} P_{i} Y_{i}\right)-2 \operatorname{tr}\left(Y_{i}^{T} \widetilde{B}_{i} X_{i}\right)+\operatorname{tr}\left(\left(\widetilde{B}_{i} X_{i}\right)^{T} P_{i}^{-1}\left(\widetilde{B}_{i} X_{i}\right)\right)\right)
\end{gathered}
$$

Normal equations

Two of the normal equations are found by differentiating w.r.t. the new variables, then substituting back into the natural variables:

- Unit Model:

$$
Y_{i} X_{i}^{T}=\widehat{B}_{i} X_{i} X_{i}^{T}
$$

- Average Covariance:

$$
\widehat{S}_{\text {true }}=1 / N \sum_{i=1}^{N} S_{i}
$$

- Unit Covariance:

$$
0=\widehat{S}_{i}\left(-p S_{\text {true }}^{-1}\right) \widehat{S}_{i}-(1+n+T-p) \widehat{S}_{i}+Y_{i} Y_{i}^{T}-B_{i} X_{i} X_{i}^{T} B_{i}^{T}
$$

Normal equations

$$
0=\widehat{S}_{i}\left(-p S_{\text {true }}^{-1}\right) \widehat{S}_{i}-(1+n+T-p) \widehat{S}_{i}+Y_{i} Y_{i}^{T}-B_{i} X_{i} X_{i}^{T} B_{i}^{T}
$$

If we consider another change of variables:

- $Q^{(r)}=Y_{i} Y_{i}^{T}-B_{i} X_{i} X_{i}^{T} B_{i}^{T}$
- $A^{(r)}=-(1 / 2)(1+n+T-p) I$
- $B^{(r)}=1$
- $R^{(r)}=(1 / p) S_{\text {true }}$

This can be solved easily as an algebraic Riccati equation:

$$
A^{T} X+X A-X B R^{-1} B^{T} X+Q=0
$$

Normal equations

Summarizing:

$$
\begin{gathered}
Y_{i} X_{i}^{T}=\widehat{B}_{i} X_{i} X_{i}^{T} \\
0=\widehat{S}_{i}\left(-p S_{\text {true }}^{-1}\right) \widehat{S}_{i}-(1+n+T-p) \widehat{S}_{i}+Y_{i} Y_{i}^{T}-B_{i} X_{i} X_{i}^{\top} B_{i}^{T} \\
\widehat{S}_{\text {true }}=1 / N \sum_{i=1}^{N} S_{i}
\end{gathered}
$$

The following algorithm can be used to obtain $S_{i}, S_{\text {true }}$, and B_{i} for all i

1. Compute \widehat{B}_{i}
2. Initialize \widehat{S}_{i} and $\widehat{S}_{\text {true }}$.
3. Compute \widehat{S}_{i}
4. Compute $\widehat{S}_{\text {true }}$
5. Check the variables have converged. If so, stop. If not, go to step 3.
Convergence is guaranteed, by convexity

Now are we satisfied?

We chose $B_{i}, S_{\text {true }}$ and S_{i} to minimize:

$$
\begin{aligned}
& \ell=N p \log \left|S_{\text {true }}\right|+\sum_{i=1}^{N}\left(p \operatorname{tr}\left(S_{\text {true }}^{-1} S_{i}\right)+(T+n+1-p) \log \left|S_{i}\right|\right. \\
&\left.+\operatorname{tr}\left(\left(Y_{i}-B_{i} X_{i}\right)^{T} S_{i}^{-1}\left(Y_{i}-B_{i} X_{i}\right)\right)\right)
\end{aligned}
$$

We wanted to encode the idea:

- each $v_{i}(t)$ should have low covariance (satisfied)
- B_{i} should be "similar" to $B_{j}, \forall i \neq j$ (unsatisfied)
- The covariance of $v_{i}(t)$ should be "similar" to that of $v_{j}(t)$. (satisfied, though not obvious)

Brief simulation example

$$
y_{i}(t)=B_{i} x_{i}(t)+v_{i}(t)
$$

Random variables were generated according to:

- $x_{i}(t) \in \mathbb{R}^{n} x_{i}(t) \sim \mathcal{N}\left(0, \Sigma_{x}\right)$, i.i.d. the (known) input of unit i at time t.
- $v_{i}(t) \in \mathbb{R}^{n}, v_{i}(t) \sim \mathcal{N}\left(0, S_{i}\right)$, i.i.d., is the residual for unit i at time t.
- $B_{i} \in \mathbb{R}^{n \times k}, B_{i} \sim N_{n, k}\left(B_{\text {true }}, S_{i}, I\right)$ is the static linear map for turbine i.
- $S_{i} \sim \mathcal{W}\left(S_{\text {true }} / p, p\right)$ is the covariance of the residual, with p degrees of freedom.

Constants for simulation

$$
\begin{gathered}
\Sigma_{x}=\left[\begin{array}{cccc}
1 & 0.5 & 0.25 & 0 \\
0.5 & 1 & 0.5 & 0 \\
0.25 & 0.25 & 1 & 0 \\
0 & 0 & 0 & 0.001
\end{array}\right] \quad S_{\text {true }}=\left[\begin{array}{cc}
0.1 & 0.01 \\
0.01 & 0.001
\end{array}\right] \\
B_{\text {true }}=\left[\begin{array}{cccc}
-29.62 & -29.36 & 1 & 0.0733 \\
0.0314 & 0.0385 & 0.947 & -9.51 \times 10^{-5}
\end{array}\right] \\
T=100 \quad N=50 \quad p=10 \quad \alpha=1
\end{gathered}
$$

$B_{\text {true }}$ obtained from "Performance monitoring of gas turbines," Journal of Orbit, Vol. 25, 2005

Results (unit covariance Error)

The error $\left\|S_{i}-\widehat{S}_{i}\right\|$ vs. i, for the regression model (green), the covariance model (blue), and the naive model (red)

Results (unit model error)

The error $\left\|B_{i}-\widehat{B}_{i}\right\|$ vs. i, for the regression model (green), the covariance model (blue), and the naive model (red)

Future work

- Using these approaches on real data will prove their efficacy. We are actively seeking such (real) data.
- When are these formulations better than naive approaches? When are they not?
- Is there a formulation that will acheive our original objectives? As a reminder:
- each $v_{i}(t)$ should have low covariance
- B_{i} should be "similar" to $B_{j}, \forall i \neq j$
- The covariance of $v_{i}(t)$ should be "similar" to that of $v_{j}(t)$.
- Is the Wishart distribution the best prior for the unit covariances?

References

1. E. Chu, D. Gorinevsky, and S. Boyd. Detecting aircraft performance anomalies from cruise flight data. In AIAA Infotech Aerospace Conference, Atlanta, GA, 2010.
2. E. Chu, D. Gorinevsky, and S.P. Boyd. Scalable statistical monitoring of fleet data. In World Congress, volume 18, pages 1322713232, 2011.
3. M. Devaney and B. Cheetham. Case-based reasoning for gas turbine diagnostics. In AAAI 2005, 2005.
4. D. Gorinevsky. Bayesian fault isolation in multivariate statistical process monitoring dimitry gorinevsky. In American Control Conference (ACC), 2011, pages 19631968. IEEE, 2011.
5. P. D. hoff. Separable covariance arrays via the Tucker product, with applications to multivariate relational data. eprint arXiv:1008.2169, August 2010.
6. J. Petek and P. Hamilton. Performance monitoring of gas turbines. Journal of Orbit, 25(1):6474, 2005.
7. K.B. Petersen and M.S. Pedersen. The matrix cookbook. Technical University of Denmark, pages 715, 2008.
8. R. Rosipal and N. Kramer. Overview and recent advances in partial least squares. Subspace, a Latent Structure and Feature Selection, pages 3451, 2006.
9. AJ Volponi, H. DePold, R. Ganguli, and C. Daguang. The use of kalman filter and neural network methodologies in gas turbine performance diagnostics: a comparative study. Journal of engineering for gas turbines and power, 125:917, 2003.
10. Y. Zhang and J. Schneider. Learning multiple tasks with a sparse matrix-normal penalty. Advances in Neural Information Processing Systems, 2010.
