Frequency Stability Analysis for Inverters in Low Voltage Distribution Systems

Chung-Ching Chang EE292K Final Presentation June 12, 2012

* Under the instruction of Prof. Dimitry Gorinevsky and Prof. Sanjay Lall ** Based on the previous work by Eric Glover

Traditional Power Grid

- Unidirectional
- Transform LV/HV for transmission

Frequency Control in Generation

- Primary control
 - Regulates frequency vs. output power
- Secondary control
 - Restores frequency by adjusting turbine valves

Distributed Generation

Detailed Simulation

• SimPowerSystems: 3-phase Utility Grid, Inverter, Controls

Detailed Stability Analysis

- Run detailed simulation to ensure the system is stable
 - With all reasonable combinations of 20 parameters
 - 5 samples for each parameter
 - Each simulation takes 3 minutes
- Total simulation time is 0.5 Billion Years $-5^{20} \cdot 180s = 1.72 \cdot 10^{16}s = 544$ Million Years

Surrogate Model

- Single phase system
- System linearized around the steady-state
- Lower computational complexity

	Detailed model	Surrogate model
Number of samples	5 ²⁰	5 ⁸
Simulation time	~ 3 minutes	~ 1 second
Total time	1.72 · 10 ¹⁶ second	$3.9 \cdot 10^5$ second
Speed-up		~ x 10 ¹¹

* More speed-up with sparser parameter samples

Surrogate Model

Control Logic Block

Gridtie Inverters

Inject power into the grid with unity power factor:

$$P = P_{set},$$

$$Q = Q_{set} = 0$$

$$I_N + LCL + V_C + V_P + V$$

Control Logic Block

Droop Inverters

Control Logic Block

 This adds the inertia to the inverters as that of the primary control in generators

Control Framework

- Stability issues in transient:
 - Set points P_{set}, Q_{set}
 - Exogenous frequency disturbance Δf_G

Stability Analysis

 H_∞ norm measures the worst case disturbance amplification from the frequency of V_G to that of V_N

$$\|T\|_{\infty} = \sup \frac{\|\Delta \omega_{V_G}\|_{\infty}}{\|\Delta \omega_{V_N}\|_{\infty}}$$

Surrogate Model Verification

 Surrogate model matches the detailed simulation model reasonably well

Analysis Results

• Range of parameters

Parameters	Minimum Value	Maximum Value
Penetration a	0.05	0.95
Load power P_L	5kW	40kW
Power factor $\cos(\psi)$	0.9	1.00
Line length l	0.25km	1km
PLL rise time	0.02s	0.1s
PLL overshoot	23%	45%
LCL power loss	$1 \cdot 10^{-2}$ Watt	5Watt
LCL settling time	0.12s	0.22s

Analysis Results

H∞ norm is always less than 2 in all samples explored!

Conclusion

- Frequency stability analysis is evaluated for both gridtie and droop inverters
- Grid frequency disturbance is amplified roughly in proportional to penetration, load power, and line distance
- For a well-tuned inverter, this amplification is reasonably small
- However, the power factor may drop below 0.85 as viewed from the upstream as penetration increases, violating IEEE 1547