

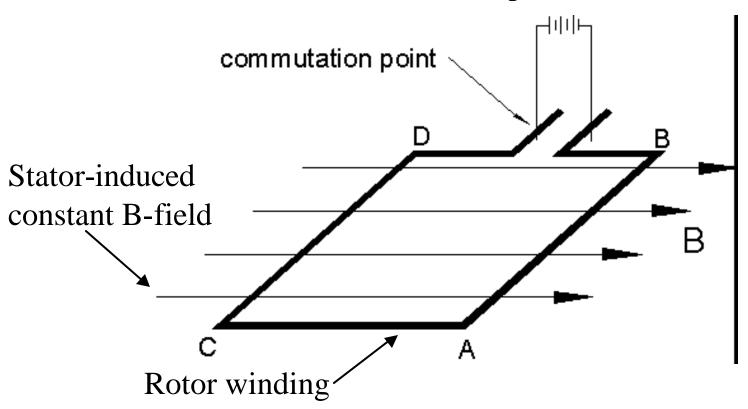
Lecture #11 Outline

Embedded System Design Laboratory

- Motors
 - DC motors
 - Stepper motors
- Motor-driving Electronics
- RC Servos

#1

DC Motors

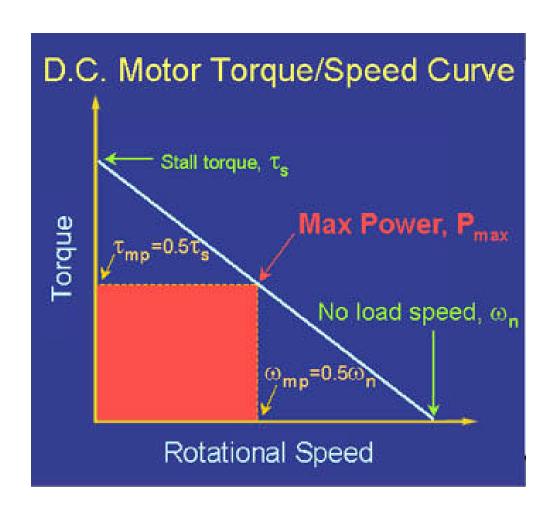

- DC motors are distinguished by their ability to operate from direct current (not as evident as it might appear)
- The Parts
 - Rotor The rotating center portion. Term may also refer to the winding that is on the rotor.
 - Stator The static (stationary) windings around the rotor. In many small motors, the stator can be replaced with permanent magnets (not as efficient).
 - Commutator The brush connection to the winding on the rotor.

Simplified DC Motor:

Embedded System Design Laboratory

DC power source

Graphic from application note by MicroMo Electronics at http://www.micromo.com/03application_notes.ge


DC Motor Characteristics:

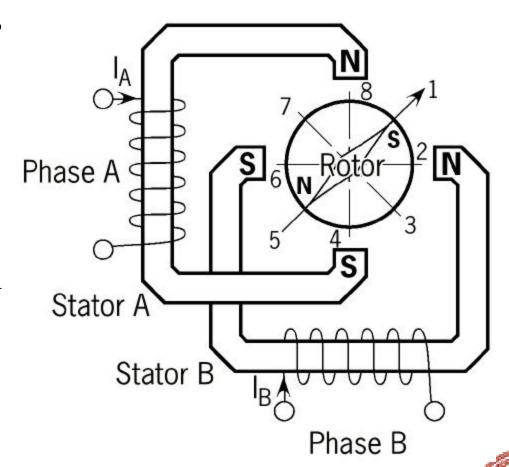
- Speed varies with applied voltage
 - RPM = (1000*Va)/Ke
- Torque varies with current
 - Torque = Kt*I
- Polarity determines direction of rotation
- Requires an external positional encoder to close feedback loop.

DC Torque vs. Speed

Stepper Motors

Embedded System Design Laboratory

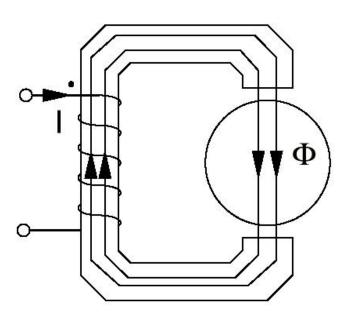
- Can be thought of as a DC motor without a commutator
- Active windings are on the stator instead of the rotor. Rotor is often a permanent magnet.
- Multiple wires give access to stator coils (typically two coils)
- Requires control electronics for sequencing coils. This replaces the commutator.
- Excellent "Open-Loop" Servo

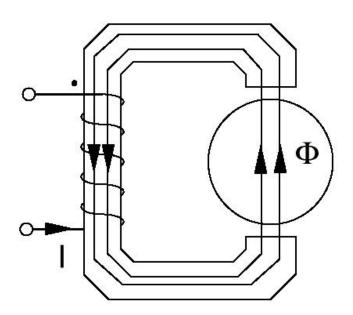


October 30, 2002

Two-Phase Stepper Motor

- Power to the two coils must be properly sequenced (phased) to achieve rotor rotation
- Rotation is synchronous to the drive sequence, which means high rotational precision is possible

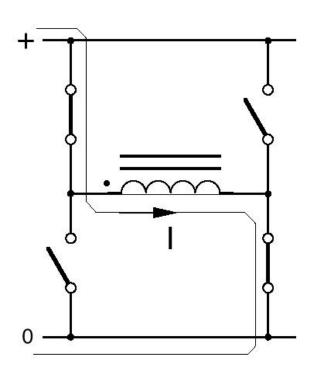


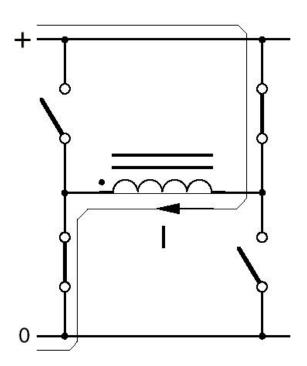


Bipolar Stepper Motor

Embedded System Design Laboratory

• Reversing current flow in the stator windings causes B field to change direction and rotor to move

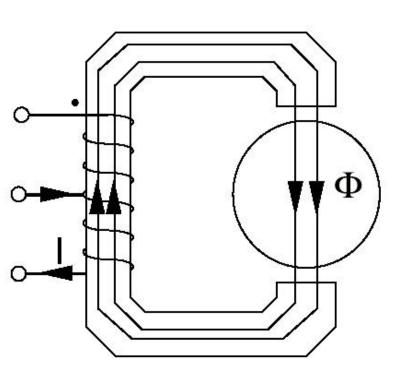


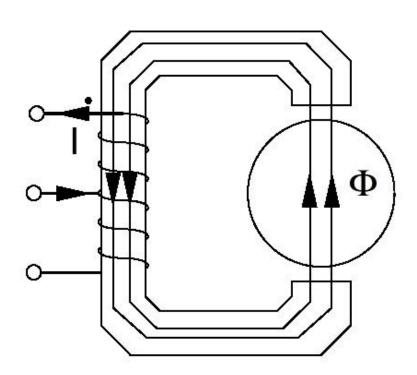


Bipolar Stepper Motor Drive

Embedded System Design Laboratory

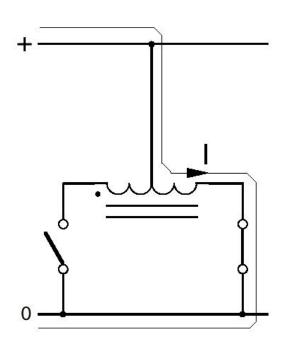
H-Bridge Bipolar drive

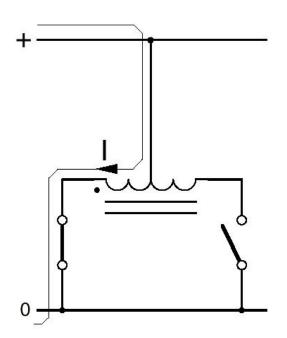




Unipolar Stepper Motor

Embedded System Design Laboratory





Unipolar Stepper Motor Drive

Embedded System Design Laboratory

Unipolar drive

Stepper Motor Drive Modes

- Wave-Drive One phase energized at any instant
- Full-Step Drive Two phases energized at any instant
- Half-Step Drive One then two phases, everyother-step
- Micro-stepping Continuously varying current between phases
- Brushless DC Motor Closed-loop controlled special case.

Wave-Stepping Sequence

Embedded System Design Laboratory

Unipolar motor

Bipolar motor

Full/Half-Stepping Sequence

DC Motor Electronics

Embedded System Design Laboratory

• Single Direction

- NPN transistor, MOSFET, or power driver IC
- ON/OFF control or PWM to control speed, torque, delivered power
- 2N2222 for small motors (I<200mA)
- ULN2003/ULN2803 7/8-channel power driver (I<800mA/chip)
- TIP120 for larger motors (I<5A)

Bi-Directional

- Need reversible power, an H-Bridge Driver
- LMD18200: single H-bridge high-power motor driver. Up to 55V 3A. Accepts enable, brake, and direction inputs
- LM18293: dual H-bridge motor driver. I<400mA. May be used for both stepper motors and DC motors

Stepper Motor Electronics

Embedded System Design Laboratory

Unipolar Drive

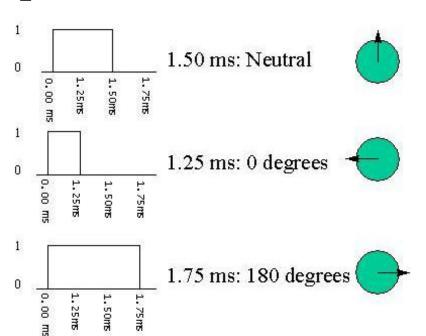
- Can use 4 to 8 NPN transistors or MOSFETs, or power driver IC
 - Must provide sequencing logic/signals to make motor operate
 - Could do microstepping using PWM
 - 2N2222 for small motors (I<200mA)
 - ULN2003/ULN2803 7/8-channel power driver (I<800mA/chip)
 - TIP120 for larger motors (I<5A)

• Bipolar Drive

- Needs reversible power for two coils (Dual H-Bridge Driver)
- LM18293: dual H-bridge motor driver. I<400mA. May be used for both stepper motors and DC motors
- UCN5408, MC3479, etc: dual H-bridge driver plus sequencing logic for stepping the motor. Accepts STEP, DIR inputs.

RC Servos: Overview

- Servos made for Radio-Control applications can be commanded by your AVR!
- RC-Servos are:
 - Cheap (typically \$10, range \$5-50)
 - Strong (typically 42 oz-in or 3.1 kg/cm)
 - Small (typically 1.6"x0.8"x1.4")
 - Have built in control electronics, gearing, mount holes
 - 3-wire interface (Ground, Power, Control)
 - Operate on 4-6V
 - Commanded to a position by pulse width



RC Servos: Commanding

Embedded System Design Laboratory

"Closed-loop" position commanding by

pulse width

Motor Web References:

Embedded System Design Laboratory

• DC Motors:

- http://lancet.mit.edu/motors/index.html
- http://www.micromo.com/03application_notes.asp
- <u>http://www.instantweb.com/o/oddparts/acsi/motortut.htm</u> (Document still under development)

• Stepper Motors:

- <u>http://www.ericsson.com/microe/apn_ind.html</u>
- http://www.st.com/stonline/books/pdf/docs/1679.pdf
- http://www.thomsonind.com/airpax/airpax.htm

RC Servos

- <u>http://www.google.com</u> (keywords: RC servo)
- http://www.towerhobbies.com

