
EE183
Olukotun

Handout #10
Winter 2003

1

Lecture #8: Lab 3
EE183 Pipelined Processor

Kunle Olukotun

Stanford EE183

February 3, 2003

Lab Stuff

• Lab #2 due Friday at 6pm

• I ‘ll be in the lab at 5pm or so for demos.

• Any questions?

EE183
Olukotun

Handout #10
Winter 2003

2

System-on-Chip (SoC) Design
Challenges

• > 100,000 gates/mm2

• Verification is a bottleneck
– Increasing complexity
– >70% of resources on verification

• Cost of bugs rising
– 1 million mask cost
– Extra design time

• Shorter time to market
– Markets change
– Standards change

• Need to increase designer productivity

RTL Design

• Datapath
– Fixed purpose

– consumes most of gates

• Control
– Datapath sequencing

– Error conditions

– Communication

– Control consumes most of
verification time

EE183
Olukotun

Handout #10
Winter 2003

3

Processor Based SOC

• Processors controls hardwired
functions

• Memory level communication
– Memory mapped I/O
– VGA example

• More software development
• Added flexibility

– Decreased design time
– Adapt to changing standards

• Embedded processors
– MIPS, ARM, PowerPC

VGA

Application Specific Instruction-
set Processor (ASIP)

• Specialized datapath (FUs)
• Register level

communication
• ISA changes
• Advantages

– Raises design abstraction: C
instead of Verilog

– Eliminates most control logic
– Added flexibility

• Configurable processors
– Tensilica
– ARC

• Final project

EE183
Olukotun

Handout #10
Winter 2003

4

Processor Overview

• 12-bit RISC Microcontroller
– What would having only 8 bits mean for addressing

memory?

• 4 or 8 General Purpose Registers
– 4 back in the days when we had a small FPGA J

• 43 Instructions
• 3 operand instructions
• 4 stage pipeline
• Register indirect addressing mode

– What does this mean?

Why Design this Processor?

• Complex enough to be “interesting”

• Simple enough to complete in 2 weeks

• Pipelining is an important technique in
digital design

•• Exciting!Exciting! Tell your friends and look cool at
dinner parties

EE183
Olukotun

Handout #10
Winter 2003

5

Processor Overview

ADDR DATA IROM_DATA

EXT_COND

RESET

ADDR

DATA

ADDR DATA

INPUTS OUTPUTS

IROM_ADDR

IROM CPU

SRAM

VGA

counter

Instruction Set Architecture
(ISA)

• 8 General Purpose Registers
• ALU Instructions

– 28 Instructions
– 3 operands

• Control Transfer Instructions
– 12 Instructions
– Conditional/Unconditional branches

• Memory Instructions
– 2 instructions
– Load/Store

EE183
Olukotun

Handout #10
Winter 2003

6

ALU Instructions I

ALU Instruction format

Arithmetic

15 14 13 11 10 6 5 3 2 0
0 1 WC OP RA RB

OPhex operation mnemonic
00 C = A + B ADD C, A, B
01 C = A + B + 1 ADDINC C, A, B
02 C = A PASSA C, A
03 C = A + 1 INCA C, A
04 C = A - B - 1 SUBDEC C, A, B
05 C = A - B SUB C, A, B
06 C = A - 1 DECA C, A
07 C = A PASSA C, A

ALU Instructions II
Shift Instructions

Boolean Instructions
OPhex operation mnemonic

10 C = 0 ZEROS C
11 C = A • B AND C, A, B
12 C = A' • B ANDNOTA C, A, B
13 C = B PASSB C, B
14 C = A • B' ANDNOTB C, A, B
15 C = A PASSA C, A
16 C = A ⊕ B XOR C, A, B
17 C = A + B OR C, A, B
18 C = A' • B' NOR C, A, B
19 C = A ⊕ B' XNOR C, A, B
1A C = A' PASSNOTA C, A
1B C = A' + B ORNOTA C, A, B
1C C = B' PASSNOTB C, B
1D C = A + B' ORNOTB C, A, B
1E C = A' + B' NAND C, A, B
1F C = 1 ONES C

OPhex operation mnemonic
08 C = Logical Shift Left(A) LSL C, A
09 C = Arith Shift Right(A) ASR C, A

EE183
Olukotun

Handout #10
Winter 2003

7

Literal Instruction
Literal Instruction

Old literal Instruction format

15 14 13 11 10 7 0
1 0 WC 0 0 0 LITERAL

New literal Instruction format

OPhex operation mnemonic
02 C = literal LOADLIT C, literal

15 14 13 11 10 0
1 WC LITERAL

Control Transfer Instructions
Conditional and unconditional jumps with absolute addresses

Instruction format
15 14 13 12 11 8 7 0
0 0 OP COND JUMP ADDRESS

Instructions

Condition codes are only set by ALU instructions

OPbin operation mnemonic
00 Jump False JF.cond JPC
01 Jump True JT.cond JPC

CONDbin condition mnemonic
0100 ALU result negative .NEG
0101 ALU result zero .ZERO
0110 ALU carry .CARRY
0111 ALU result negative or zero .NEGZERO
0000 TRUE .TRUE
1000 External Condition .EXT

10 Uncond. Jump J JPC

15 14 13 12 11 0
0 0 OP JUMP ADDRESS

• Extra points for making
conditional branch PC
relative
• Requires assembler
changes

• Could add up to 8
external conditions

EE183
Olukotun

Handout #10
Winter 2003

8

Memory Instructions

Instruction format

Instructions

OPhex operation mnemonic

08 C = Mem[A] LOAD C, A
10 Mem[A] = B STORE A, B

15 14 13 11 10 6 5 3 2 0
0 1 WC OP RA RB

Register indirect addressing mode

NOP Instruction

NOP instructions are useful in pipelined processors

Many different NOP instruction encodings are possible

NOP Jump False on condition TRUE: JF.TRUE 0x00

15 14 13 12 11 8 7 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

EE183
Olukotun

Handout #10
Winter 2003

9

I/O Devices I
• VGA

– Memory mapped I/O
– Pick two addresses in processor address space

• Addr1 = BRAM Address
• Addr2 = BRAM data

STORE Addr1, X //Use X as BRAM location
LOAD Addr2, A //Load from BRAM location
STORE Addr2, A //Store to BRAM location

• Use VGA
– Manipulate a simple polygon on the display

• Flash a square on and off
• move a square from side to side

– Design needs to run at least 25MHz

I/O devices II
• Connect free running counter to EXT

– Choose 1 bit or multiple bits

– Extra: use memory mapped I/O to reset

• Use EXT in timing loops

_LAB1 JF.EXT _LAB1 //spin waiting for posedge

 < Body of timing loop >

_LAB2 JT.EXT _LAB2 //spin waiting for negedge

 J _LAB1

EE183
Olukotun

Handout #10
Winter 2003

10

Instruction Execution Steps

• 4 Step Sequence
• Step I Fetch instruction from Instruction Memory
• Step R Read operands from registers (A, B)
• Step E Execute instruction, set condition codes
• Step W Write results to register C

• One stage per step
• Each instruction goes through all four stages

– Assume each stage takes one clock cycle

Pipeline

EE183
Olukotun

Handout #10
Winter 2003

11

Pipelined CPU Block Diagram

PC IROM CNTRL

REG
FILE

FWD

DRAM

I Stage R Stage E Stage W Stage

Bypassing/Forwarding

• Given the following code fragment
ADD R1, R2, R3
SUB R4, R1, R5
XXX
YYY

• What’s going on
in the pipeline?

• How many different types of data hazards are
there?

EE183
Olukotun

Handout #10
Winter 2003

12

Control Transfer
• Code fragment

00 ADD R1, R2, R3
01 JT.ZERO _taken
02 SUB R4, R5, R6
03 AND R7, R8, R1
…
_taken 11 NOR R7, R8, R1

• Branch Taken vs. Branch Not Taken

ASM183 (Assembler)

EE183
Olukotun

Handout #10
Winter 2003

13

What do you get?

• Lab 3 Verilog
– A lot of verilog given
– Look through ALL of it

• Some are not instantiated in the Lab 3 schematic
– –e.g. boolean.v

• ASM183
– Perl assembler
– Perl Handout

• How many already know perl?

