
EE183
Olukotun

Handout #9
Winter 2003

1

Lecture #7: Performance

Kunle Olukotun

Stanford EE183

Jan 29, 2003

Lab Stuff

• General Lab #2 Questions?

EE183
Olukotun

Handout #9
Winter 2003

2

Performance
• In many applications, performance is the name of

the game
• As long as process technology improves

performance is gained by waiting and doing
nothing…
– We (the logic design community) benefit directly from

the efforts of the Silicon process technology folks
– 15% per year

• Need architecture improvements to use more
transistors
– 60% per year

• We want 85% improvement per year

Parallelism is the Key

• The main arrow in our quiver is parallelismparallelism
– Do more work in a given unit of wall clock time

• Parallelism is what hardware is all about
– Focus on RTL

• Two methods
– Replication

• Add more units

– Pipelining
• Use the existing units more efficiently
• Increase clock frequency

• Both require parallelism in the application

EE183
Olukotun

Handout #9
Winter 2003

3

Replication

• Instead of having only one unit calculate
each fractal position, bisect the screen and
have two units calculating fractal values

• Linear Speedup does not often happen
– Does using two units improve the performance

by two for an application? Rarely

– Amdahls Law

Sources of Inefficiency in
Replication

• The algorithm cannot usually be perfectly
partitioned
– Leverage Symmetry

• Partition horizontally or vertically for fractal?

– Load imbalance
• Do all points have the same number of iterations?

• Conflicts arise from shared resource accesses
– Single BRAM write port in design so it must be shared

• Solve the problem by delaying the access of one unit
– That is, the unit is stalled until the resource become free

– What is the duty cycle of each unit’s access?
• So not an issue for the fractals

EE183
Olukotun

Handout #9
Winter 2003

4

Multi-Cycle Paths

• Why did we insert registers?

• Why not just let the datapath take N clock
cycles?

•• Just say no!!!!Just say no!!!!
– Risk versus Reward

– Tool chains do not support this
• Same arguments really as register retiming

– Is this just inertia? I personally don’t think so…

Pipelining??

• Inserting registers did not decrease the wall
clock time?!?!?!
– Simply made our design fully synchronous

– Was not pipelining

• What is the utilization of the various stages?

EE183
Olukotun

Handout #9
Winter 2003

5

Pipelining!!
• Insert the next data item into the datapath before

the previous one has finished
• Pipe registers keep the computations stage
• If you have N stages in your pipeline, think of it as

N different units overlapped in space and offset in
time
– Same as replication but much cheaper

• Keeps hardware as busy as possible
• What is the effect of overlaping execution of

different units if units have dependencies?
– Pipeline data hazards

Path of Data for Fractal Datapath

Xn Yn

** *

- +<<1

Y n+1X n+1

++ If>4 output 1

Mux Mux

Julia YJulia XMandel X Mandel X

Feedback for next iteration

PipeRegisters

PipeRegisters

Data 1

EE183
Olukotun

Handout #9
Winter 2003

6

Path of Data for Fractal Datapath

Xn Yn

** *

- +<<1

Y n+1X n+1

++ If>4 output 1

Mux Mux

Julia YJulia XMandel X Mandel X

Feedback for next iteration

PipeRegisters

PipeRegisters

Data 2

Data 1

Path of Data for Fractal Datapath

Xn Yn

** *

- +<<1

Y n+1X n+1

++ If>4 output 1

Mux Mux

Julia YJulia XMandel X Mandel X

Feedback for next iteration

PipeRegisters

PipeRegisters
Data 2

Data 1

Data 3

EE183
Olukotun

Handout #9
Winter 2003

7

Fractal Generation Datapath

Xn Yn

** *

- +<<1

Y n+1X n+1

++ If>4 output 1

Mux Mux

Julia YJulia XMandel X Mandel X

Feedback for next iteration

PipeRegisters

PipeRegisters

5–7 Pipe stages

Pipelined generation of
different points.
How many?

Pipeline Performance Losses

• The datapath rarely can be evenly split
• Depends on the longest path in any stage

• PipeRegisters add fixed overhead (setup and
hold)

• Data “Hazards” can cause stalls/bubbles in
the pipeline

EE183
Olukotun

Handout #9
Winter 2003

8

What performance is required?

• Replication and Pipelining are not trivial to
implement—make sure you need them

• Is either needed for Lab #2?
• How would you tell?

– Hint: each Julia image takes (64*64*64*7*1/50e6) =
0.036s to create.

– Is this “real-time” enough for an animation?

• Regardless very important idea
– Extra points for reuse of a single pipelined multiplier
– More points for multiple coordinates using three or

more pipelined multipliers

How to Pipeline for Lab #2?

• Create the datapath in a single module
– Use the coregen multiplier
–– Register all inputs and outputsRegister all inputs and outputs
– Implement and then run the static timing tool
– Add a pipe stage
– Iterate

• Note that the coregen multiplier has several
pipeline options

EE183
Olukotun

Handout #9
Winter 2003

9

Static Timing Tool
• Must fully implement design first

– Needs placement and routing info

• Tools ‡ Simulation/Verification ‡ Interactive
Timing Analyzer

• Analyze ‡ Against Auto Generated Design
Constraints

• Most Critical Paths will be shown
– You can crossprobe into the Floorplanner

• You should report the critical path for all your
desings
– You should try and optimize that path if you have time

