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EE183 Lab 3

EE183 LAB 3

12-bit RISC Microprocessor

Purpose
The third project consists of implementing a pipelined processor.  This project illustrates many of the
datapath and control design issues you have faced in the previous projects.  It is complex enough to be
interesting, but simple enough to be done in two weeks.

Assignment

Here are the requirements:

1. Design and implement your processor on one Xilinx FPGA.
2. Connect your processor to a memory mapped VGA device
3. Connect  the EXT signal to  one bit of a free running counter
4. Demonstrate your working processor by running our test programs.
5. Write several test programs.
6. Demonstrate your working processor by running your test programs (at least one must use the

VGA)
7. Turn in a write-up.

System Description

There are  four main parts to the design: 1) the processor, 2) the instruction ROM, 3) the data RAM, 4) the
I/O devices (VGA, counter).  You will have to design the processor and I/O devices; the other two parts are
provided.  Details about each part will follow.  Below is a description of the primary inputs and outputs of
the system.  Figure 6 shows the block diagram of this system.

Primary Inputs

CLK System clock
EXT_COND Signal which specifies an external condition for conditional branches.
SW_DATA[11:0] Set of external switches for data input to the processor.

Figure 1: System Block Diagram
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The Processor
The processor is to be designed by you.  You must follow the specifications exactly so that programs
written for this instruction set will run on your completed hardware.  In other words, you cannot modify
the instruction set architecture.

The entire processor must fit on a single FPGA.  There is plenty of room to fit everything if you are
efficient, but a careless design will overflow the part.  Parts of the processor design will be given to you.
Be sure to look at all the verilog to see what is provided.  You must fill in the rest.

The Instruction ROM

The instruction ROM is emulated in the FPGA.  We will be using the Xilinx CORE generator to create
this element.  A sample IROM is included in the starter files, but you will have to generate a separate
IROM for each program you wish to run.  To do this first open up CORE Generator in Foundation (tools-
>design entry->CORE Generator).  A list of current modules should be displayed including the data ram
and irom.  Right click on the IROM and select recustomize.  This will bring up a window allowing you to
redesign the IROM block.  If you wish you can change the depth (number of instructions) of the ROM.
To load a program into the ROM simply select “Load init file” and load in a .coe file generated by
asm183.pl.  Note that the ROM generated by the CORE Generator is pipelined and provides the data on
the following clock edge.  This means that the address provided in the I stage will yield corresponding data
at the beginning of the R stage.

The Data RAM

The data RAM is a 12-bit wide memory that you can implement using a CORE Generator module.  This
module has been provided for you in the starter files.  It is worth noting that the output data for a read
operation is available on the following clock edge.  This means that if you provide the address in the E
stage the data is not ready until the W stage.

Important notes

- Make sure that you switch out the ROMs when you want to run a different program.  This means
you will have to generate a separate bit file for each program.  When you are ready to demo it
would be nice to have all of these generated and ready to display at once.

- You will use the VGA to  display your results to the outside world.

Processor Description

Figure 2 shows a block diagram of the processor you are to design.  The top level schematic of the
processor is very similar to the block diagram.
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The processor you are to design is a 12-bit RISC microprocessor.  It features 8 general purpose registers,
43 instructions, and a 4 stage pipeline.  The external interface signals are listed below.  You will be
provided with a "template" schematic for the processor design.

CPU_IROM_ADDR_I[11:0] This output is the address of the instruction to be fetched.
IROM_CPU_DATA_D[15:0] This input is the instruction word at the address specified by

IROM_ADDR[11:0].
CPU_DRAM_ADDR_E[11:0] This output is the address of the data RAM location being accessed.
CPU_DRAM_DATA_E[11:0] This is the data to be written on a STORE
DRAM_CPU_DATA_M[11:0] This is the data that has been read on a LOAD
DRAM_WE This output is the data RAM write enable.
CLK This input is the system clock
EXT_COND This input specifies an external condition for conditional branches.
RESET This input sets the PC to zero and clears out all the pipeline flops.

Figure 2: Processor Block Diagram
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Instruction Set

Several fields occur frequently in the instruction set encodings.  These fields are the destination register
(WC), the A source register (RA), and the B source register (RB).  The interpretation of other fields
depends on the instruction class.

ALU Instruction Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1
0 1 WC OP RA RB

ALU Instructions

OP Field Operation Mnemonic
   00 C = A + B ADD C, A, B
   01 C = A + B + 1 ADDINC C, A, B
   02 C = A PASSA C, A
   03 C = A + 1 INCA C, A
   04 C = A - B - 1 SUBDEC C, A, B
   05 C = A - B SUB C, A, B
   06 C = A - 1 DECA C, A
   07 C = A PASSA C, A
   08 C = Logical Shift Left (A) LSL C, A
   09 C = Arithmetic Shift Right (A) ASR C, A
   10 C = 0 ZEROES C
   11 C = A · B AND C, A, B
   12 C = A' · B ANDNOTA C, A, B
   13 C = B PASSB C, B
   14 C = A · B' ANDNOTB C, A, B
   15 C = A PASSA C, A
   16 C = A xor B XOR C, A, B
   17 C = A + B OR C, A, B
   18 C = A' · B' NOR C, A, B
   19 C = A xor B' XNOR C, A, B
   1A C = A' PASSNOTA C, A
   1B C = A' + B ORNOTA C, A, B
   1C C = B' PASSNOTB C, B
   1D C = A + B' ORNOTB C, A, B
   1E C = A' + B' NAND C, A, B
   1F C = 1 ONES C

Literal Instruction Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1
1 L WC LITERAL
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Literal Instruction

OP Field Operation Mnemonic
1 C = literal LOADLIT C, literal

In the literal instruction, the literal data is not in a contiguous bit field.  The most significant bit of the
literal is in the L field.  Originally this instruction only supported 8-bit literals, but it was extended to 12
bits to make it more useful.

Memory Instruction Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1
0 1 WC OP RA RB

Memory Instructions

OP Field Operation Mnemonic
   0A C = Mem[A] LOAD C, A
   0B Mem[A] = B STORE A,B

Control Transfer Instruction Formats

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0
0 OP COND JUMP ADDRESS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0
0 OP JUMP ADDRESS

Control Transfer Instructions

OP Field Operation Mnemonic
   0 Jump false JF.cond JPC
   1 Jump true JT.cond JPC
   2 Jump J JPC

COND Field Operation Mnemonic
   0 Always true .TRUE
   4 Result < 0 .NEG
   5 Result = 0 .ZERO
   6 Carry = 1 .CARRY
   7 Result <= 0 .NEGZERO
   8 Ext Cond = 1 .EXT

The NOP instruction is implemented by using the jump false on condition true instruction (JF.TRUE).
The encoding of this instruction results in an instruction word of all zeros.

Except for the external and always true conditions, the other conditions are set as a result of ALU
operations.  In your design, assume that conditional jumps always follow an ALU instruction.  In other
words, you do not need to save the condition codes from the ALU.  Placing a conditional jump after a
non-ALU instruction will result in unspecified behavior.  Avoid this while writing programs.
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Hazards Created By Pipelining

In a non-pipelined processor, the execution of each instruction is completed before the next instruction is
begun.  Consider the cycle diagram for a non-pipelined, multi-cycle version of the processor:

Cycle number 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Instruction i I R E W

Instruction i+1 I R E W

Instruction i+2 I R E W

Each instruction takes four cycles to complete, and the machine throughput is 0.25 instructions per cycle.
Now consider the cycle diagram for a four-stage pipelined version of the processor (which you will build):

Cycle number 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Instruction i I R E W

Instruction i+1 I R E W

Instruction i+2 I R E W

Instruction i+3 I R E W

Each instruction still takes four cycles to complete, but the machine throughput is now (ideally) 1.0
instructions per cycle during sustained execution (see cycles 4 and 5).  Pipelining improves performance by
increasing instruction throughput.  This is important because real programs do not consist of three or four
instructions, but billions of instructions.

Unfortunately, nothing in this world is free (incidentally, though, pipelining is the closest thing to a free
lunch in digital design).  By overlapping instruction execution in a pipeline, hazards are created.  There are
two significant types, control hazards and data hazards.

Control Hazards—Consider the following code fragment:

ADD R1, R2, R3
JT.ZERO _TAKEN
SUB R4, R5, R6
AND R7, R8, R1
…
…

_TAKEN NOR R7, R8, R1

Due to the fact that the condition code (CC) for the conditional jump is not known until the ADD
completes the execution stage, the instruction following the conditional jump will enter the pipeline.
(Arrow signifies condition code being set)

Jump Not Taken

Cycle number 1 2 3 4 5 6 7

ADD R1, R2, R3 I R E W

JT.ZERO _TAKEN I R E W

SUB R4, R5, R6 I R E W

AND R7, R8, R1 I R E W

Since the jump was not taken, the instruction following the conditional jump is meant to be executed and
is already in the pipeline.  This is not a problem.
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Jump Taken

Cycle number 1 2 3 4 5 6 7

ADD R1, R2, R3 I R E W

JT.ZERO _TAKEN I R E W

SUB R4, R5, R6 I R E W

NOR R7, R8, R1 I R E W

In this case, however, the instruction following the conditional jump is not meant to be executed.  There
are several ways to deal with this, including flushing the pipeline or inserting bubbles.  However, this
requires additional control logic.  For the purposes of this lab, simply follow all jumps in your program
with a NOP instruction.  This way, the unwanted execution is harmless.

Data Hazards

Consider the following code fragment:

_START ADD R1, R2, R3
SUB R4, R1, R5
NOR R6, R1, R7

This code fragment results in the cycle diagram shown below.  Note that the source operand of the SUB
and NOR instructions (R1) depends on the result of the ADD instruction.

Cycle number 1 2 3 4 5 6

ADD R1, R2, R3 I R E W

SUB R4, R1, R5 I R E W

NOR R6, R1, R7 I R E W

From the above diagram, you can see that the SUB and NOR instructions will attempt to read their
operands from the register file in cycles 3 and 4, before the ADD writes back the correct data value into the
register file.  The data written back by the ADD instruction is not available until the beginning of cycle 5.
This will result in incorrect execution of the program.

Conceptually, the write data from the AND must be forwarded to the SUB and NOR instructions to ensure
correct execution.  Depending on the implementation of the processor, there may be more than one way to
achieve this effect.  In this implementation of the processor, all data is forwarded to the E stage, as shown
in the block diagram of the processor.  This requires a copy of the destination register address and data to
be saved after the W stage for possible use in the E stage (note the "extra" pipe segment after the W stage
in the block diagram).

It is entirely possible to forward from the W stage to the R stage instead of the above arrangement.
However, the schematic template you will be given is not arranged this way, so if you implement this
method, you will need to alter the template.

Do not forget that the memory instructions also transfer data to and from the register file (in fact, the
LOAD and STORE instructions are encoded as ALU operations).  You are responsible for implementing
complete data forwarding logic so that inserting NOP instructions is not necessary for correct program
execution.

Asm183

You will be provided with a perl script called asm183 which will help you with the task of assembling the
programs you write. You could do this by hand using the information you have on the instruction set, but
this course of action has been reported to be excessively painful.  Since asm183 is written in perl, you can
run it anywhere you have access to perl.  Asm183 takes your program, my_prog.asm, and creates a
Simulator command file, my_prog.cmd, so that you may simulate its execution.  Invoke asm183 by
typing “perl asm183.pl my_prog.asm”.   ASM183 provides several output formats.  The two that you will
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find useful are .coe and .lis.  The .coe file can be used by the CORE Generator program to preload your
IROM with a program.  The .lis file contains the address, machine code, and assembly for each line to
make debugging easier to follow.


