
1

Lecture 9:
The EE183 Processor

David Black-Schaffer
davidbbs@stanford.edu

EE183 Spring 2003

EE183 Lecture 9 - Slide 2

Overview
n Pipelining

n Getting everything right is a very complicated control
problem

n Regularize the data path so we can use it more
generically

n Encode the control information in the data
n Hazards

n Watch out for Data and Control Hazards
n Use Forwarding and NOPs in lab 3

EE183 Lecture 9 - Slide 3

Public Service Announcement

n Xilinx Programmable World
n Tuesday, May 6th
n http://www.xilinx.com/events/pw2003/ind

ex.htm - free!
n Guest Lectures
n Wednesday, May 7th

Gary Spivey on ASIC & FPGA Design for
Speed

EE183 Lecture 9 - Slide 4

Logistics
n Lab 2 due Friday by 5pm

n Any questions on Lab 2?

2

EE183 Lecture 9 - Slide 5

Xn Yn

** *

- +<<1

Y n+1X n+1

++ If>4 output 1

Mux Mux

Julia YJulia XMandel X Mandel X

Pipeline
Registers

Pipeline
Registers

** *

** *

Pipeline
Registers

Pipeline
Registers

EE183 Lecture 9 - Slide 6

Pipeline Performance Analysis
n With the bad data path (3, 3 stage multipliers and 2

stages after that; multiple pixels at a time)

•s•••vvv•••5

•sss•••vvv4

•••sss•••3

•••sss2

•••1

Add2Add1M3cM2cM1cM3bM2bM1bM3aM2aM1aClk

n We approach 100% utilization if there are no stalls or
dependencies and we can keep getting new data

EE183 Lecture 9 - Slide 7

Key points on Pipelining
n Increased utilization of functional units

only if you can keep the pipeline full
n Keeping the pipeline full requires more

complicated control logic
n Data hazards
n Control hazards

EE183 Lecture 9 - Slide 8

Two problems

n Control logic too complicated to keep the
pipeline full

n Pipeline specific to one particular problem

n What to do?
n Encode control information with the data
n Use a generic pipeline

3

EE183 Lecture 9 - Slide 9

Motivation for Lab 3

n Take advantage of the performance increase
from a pipelined architecture without limiting
ourselves to a particular calculation.

n We want a programmable processor
n Using a generic pipeline

(so we can calculate anything)
n Encoding the control with the data

(to make the control logic simpler so we can keep the
pipeline full)

n It’s cool: you will have built a RISC processor

EE183 Lecture 9 - Slide 10

What do we want?
n Obvious stuff:

n Instruction storage
n Math
n Load/Store from/to memory
n Control Transfer (jump if…)

n Less obvious
n Registers (so we don’t have to wait for the RAM)
n Boolean Algebra
n External inputs/outputs
n A compiler
n Anything else?

EE183 Lecture 9 - Slide 11

Overview

PC IROM CNTRL

REG
FILE

FWD

DRAM

I Stage R Stage E Stage W Stage

Instruction
Storage
(IROM)

Math and
Boolean Logic
(ALU)

Control
Transfer
(Jumps)

Registers
Memory
(RAM) EE183 Lecture 9 - Slide 12

Processor Specs
n 12-bit RISC Microcontroller

n What would having only 8 bits mean for the memory
architecture?

n 8 General Purpose Registers
n 43 Instructions
n 3 operand instructions
n 4 stage pipeline
n Register indirect addressing mode

n What does this mean?

4

EE183 Lecture 9 - Slide 13

Overview 2

ADDR DATA IROM_DATA

EXT_COND

RESET

ADDR

DATA

ADDR DATA

INPUTS OUTPUTS

IROM_ADDR

IROM CPU

SRAM

Instruction
Storage
(IROM)

Memory
(RAM)

External
I/O

EE183 Lecture 9 - Slide 14

Instruction Set Architecture
(ISA)

n 8 General Purpose Registers
n ALU Instructions

n 28 Instructions
n 3 operands

n Control Transfer Instructions
n 12 Instructions
n Conditional/Unconditional branches

n Memory Instructions
n 2 instructions
n Load/Store

EE183 Lecture 9 - Slide 15

Instruction Format

n Different for different types of instructions

n ALU instructions (similar to others):

n See Lab 3 handout

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1
0 1 WC OP RA RB

Writeback
Register

Operation
Code

Source
Register A

Source
Register B

EE183 Lecture 9 - Slide 16

Instruction Execution Steps
n 4 Step Sequence

n Step I Fetch instruction from Instruction Memory
n Step R Read operands from registers (A, B)
n Step E Execute instruction, set condition codes
n Step W Write results to register C

n So how does this simplify the control logic?

5

EE183 Lecture 9 - Slide 17

Example: R3=R1+R2

PC IROM CNTRL

REG
FILE

FWD

DRAM

I Stage R Stage E Stage W Stage

ADD R1 R2 R3

EE183 Lecture 9 - Slide 18

Example: R3=R1+R2

PC IROM CNTRL

REG
FILE

FWD

DRAM

I Stage R Stage E Stage W Stage

ADD R1 R2 R3
R1=x

R2=y

ADD
ADD R1 R2 R3

EE183 Lecture 9 - Slide 19

Example: R3=R1+R2

PC IROM CNTRL

REG
FILE

FWD

DRAM

I Stage R Stage E Stage W Stage

ADD R1 R2 R3
R3=x+y

writeback
x+y to R3

ADD R1 R2 R3
R1=x

R2=y

ADD

EE183 Lecture 9 - Slide 20

Example: R3=R1+R2

PC IROM CNTRL

REG
FILE

FWD

DRAM

I Stage R Stage E Stage W Stage

ADD R1 R2 R3

ADD R1 R2 R3
R1=x

ADD R1 R2 R3
R3=x+y

R2=y

ADD

writeback
x+y to R3

6

EE183 Lecture 9 - Slide 21

Notes

n We do a little bit of the work in each stage
and carry it along through the pipeline
registers
n Each stage will probably have more registers

n We want each stage to be as fast as
possible and as independent as possible

n Can we do this?
n Not entirely…

EE183 Lecture 9 - Slide 22

Jumps - Control Hazards

PC IROM CNTRL

REG
FILE

FWD

DRAM

I Stage R Stage E Stage W Stage

JUM
P.ZERO

ADD R1 R2 R3
R1=x

SUB R4 R5 R6
R6=q-rR2=y

writeback
x+y to R3

Whatever is in the I
stage gets executed
regardless of the jump.

EE183 Lecture 9 - Slide 23

Control Hazards Solution

n Insert a NOP after each branch statement
(JUMP)

n Now we don’t care if the next instruction
is executed because it never does anything

EE183 Lecture 9 - Slide 24

Data Hazards

PC IROM CNTRL

REG
FILE

FWD

DRAM

I Stage R Stage E Stage W Stage

ADD R1 R2 R3
R1=x

R2=y

ADD

Instruction n

SUB R4 R5 R2
R2=q-z

Instruction n-1

7

EE183 Lecture 9 - Slide 25

Data Hazards

PC IROM CNTRL

REG
FILE

FWD

DRAM

I Stage R Stage E Stage W Stage

ADD R1 R2 R3
R1=x

R2=y

ADD

writeback
q-z to R2

Instruction n

SUB R4 R5 R2
R2=q-z

Instruction n-1
Destination of instruction n-1
is the same as source of
instruction n -> Data Hazard

Forward the data from the
previous instruction.

EE183 Lecture 9 - Slide 26

Tricky Parts

n Prelab for Lab 3:

n Forwarding logic
n Really only a few cases, but it takes a bit of

thinking to work it out
n Branching (Jump) logic:
n Not too complicated either, but if you get it

wrong it will be hard to debug

EE183 Lecture 9 - Slide 27

ASM183.pl (Assembler)

EE183 Lecture 9 - Slide 28

What do you get?

n Template verilog file with some of the
pipe registers
n This also has the logic for memory-mapping

the DIP switches, but there is a typo
n Register file
n Boolean logic for the ALU
n ASM183 Perl assembler

8

EE183 Lecture 9 - Slide 29

What do you have to do?

n Understand the pipeline
n Put together each stage
n Instantiate the RAM & IROM
n Put in the Forwarding

n Add a memory-mapped VGA display
n Add a free-running timer

EE183 Lecture 9 - Slide 30

Demo

n Run the three sample programs and
display the output on the LEDs/VGA

n Write your own program which uses the
free-running counter and the VGA

EE183 Lecture 9 - Slide 31

Lecture 6 Key Points
n Pipelining only gives you better performance if

you can keep the pipeline full
n Regularize the data path and encode the control

information with the data to make it easier
n Watch out for Hazards

n Logistics
n Lab 2 demo due Friday by 5pm

