
1

Lecture 8:
More Pipelining

David Black-Schaffer
davidbbs@stanford.edu

EE183 Spring 2003

EE183 Lecture 8 - Slide 2

Overview
n Getting Started with Lab 2

n Just get a single pixel calculating at one time
n Then look into filling your pipeline

n Multipliers
n Different options for pipelining: what do you need?
n 3 Multipliers or put x*x, y*y, and x*y through

sequentially?
n Pipelining

n If it won’t fit in one clock cycle you have to divide it
up so each stage will fit

n The control logic must be designed with this in mind
n Make sure you need it

EE183 Lecture 8 - Slide 3

Public Service Announcement

n Xilinx Programmable World
n Tuesday, May 6th
n http://www.xilinx.com/events/pw2003/index.htm

n Guest Lectures
n Monday, April 28th

Ryan Donohue on Metastability and
Synchronization

n Wednesday, May 7th
Gary Spivey on ASIC & FPGA Design for Speed

n The content of these lectures will be on the Quiz

EE183 Lecture 8 - Slide 4

Logistics
n Lab 2 Prelab due Friday by 5pm

n Guest lecture next Monday
Synchronization and Metastability
These are critical for high-speed systems and
anything where you’ll be connecting across
clock domains.

SHOW UP! (please)

2

EE183 Lecture 8 - Slide 5

Easier FSMs
always @(button or current_state)
begin
 write_en <= 0;
 output <= 1;
 next_state <= `START_STATE;

 case(current_state)
 `START_STATE:
 begin
 write_en <= 1;
 if (button)
 next_state <= `WAIT_STATE;
 end
 `WAIT_STATE:
 begin
 output <= 0;
 end
end

Do this if nothing else is
specified.

Note that the else is not
specified.

What is the next state?

Be careful!
Easy way to
infer latches! EE183 Lecture 8 - Slide 6

Data Path
Xn Yn

** *

- +<<1

Y n+1X n+1

++ If>4 output 1

Mux Mux

Julia YJulia XMandel X Mandel X

Feedback for next iteration

What do we do if the whole data path
doesn’t fit in one clock cycle?

EE183 Lecture 8 - Slide 7

Pipelining Example 1
Xn Yn

** *

- +<<1

Y n+1X n+1

++ If>4 output 1

Mux Mux

Julia YJulia XMandel X Mandel X

Feedback for next iteration

12ns

6ns

6ns

2ns 12ns 12ns 2ns

1ns 6ns

3ns

How long does this wire take?

Critical path
24ns

EE183 Lecture 8 - Slide 8

Pipelining Example 2
Xn Yn

** *

- +<<1

Y n+1X n+1

++ If>4 output 1

Mux Mux

Julia YJulia XMandel X Mandel X

Feedback for next iteration

12ns

6ns

6ns

2ns 12ns 12ns 2ns

1ns 6ns

3ns

Pipeline
Registers

Critical path
12ns

Critical path
12ns

How long does this wire take?

Critical path
12ns+??ns

3

EE183 Lecture 8 - Slide 9

Pipelining Example 3
Xn Yn

** *

- +<<1

Y n+1X n+1

++ If>4 output 1

Mux Mux

Julia YJulia XMandel X Mandel X

Feedback for next iteration

12ns

6ns

6ns

2ns 12ns 12ns 2ns

1ns 6ns

3ns

Pipeline
Registers

Critical path
12ns

Critical path
6ns + ??ns

Pipeline
Registers

Critical path
6ns

EE183 Lecture 8 - Slide 10

Latency and Throughput

First output takes longer because
it has to go through all the stages
but subsequent results can come

out every clock cycle.

Time Input Output
t=0 A1
t=35ns A2 A1
t=70ns A3 A2
t=105ns A3

Comb. Logic
Input Output

35ns critical path
1 stage

Not Pipelined

Time Input S1 Output
t=0 A1
t=20ns A2 A1
t=40ns A3 A2 A1
t=60ns A3 A2
t=80ns A3

Input Output

<20ns critical path
3 stages

Pipelined
S1

A1A2 A1A2 A1A3 A2A3x A3x x

EE183 Lecture 8 - Slide 11

Key points on Pipelining
n Increases utilization for operators

n You can do multiple calculations at once so you can use
everything maximally (ideally)

n This is the point! Store the results from smaller calculations to
make the overall calculation faster.

n Insert the next data item into the datapath before the
previous one has finished

n The pipe registers keep the computation separate
n You will have a lot of pipe registers if you’re doing a lot of

calculations (I.e., Lab 3!)
n What is the effect of the algorithm feeding back on itself?

n Do all points have the same number of iterations? control
n Is the data dependent between pipeline stages? hazards

EE183 Lecture 8 - Slide 12

Multipliers
n CoreGen gives you several pipelining

options
n Which is best?
n Depends on your design
n Data size will determine speed and pipelining

n Design is an iterative process so you won’t
be able to choose the best approach at first
(i.e., get started early!)

4

EE183 Lecture 8 - Slide 13

Multiplier Issues

n Multipliers are BIG
n How can we get away with fewer multipliers?

n Multipliers may be SLOW
n How can we utilize them maximally?

EE183 Lecture 8 - Slide 14

Xn Yn

** *

- +<<1

Y n+1X n+1

++ If>4 output 1

Mux Mux

Julia YJulia XMandel X Mandel X

Pipeline
Registers

Pipeline
Registers

** *

** *

Pipeline
Registers

Pipeline
Registers

EE183 Lecture 8 - Slide 15

Now we have…

n With a 3-stage multiplier you’ve now got 5
pipeline stages

n How can you keep the pipeline full?
n How many things do you need to

calculate at once?

n What is full? Will you ever get 100%
utilization? What is good enough?

EE183 Lecture 8 - Slide 16

Xn Yn

** *

- +<<1

Y n+1X n+1

++ If>4 output 1

Mux Mux

Julia YJulia XMandel X Mandel X

Pipeline
Registers

Pipeline
Registers

** *

** *

Pipeline
Registers

Pipeline
Registers

M1a

M1b

M1c

M2a

M2b

M2c

M3a

M3b

M3c

Add1

Add2

5

EE183 Lecture 8 - Slide 17

Pipeline Performance Analysis
n With the bad data path (3, 3 stage multipliers and 2

stages after that; one pixel at a time)

•5

•4

•••3

•••2

•••1

Add2Add1M3cM2cM1cM3bM2bM1bM3aM2aM1aClk

n In 5 cycles we used 11 units out of 55 available:
20% average utilization

EE183 Lecture 8 - Slide 18

Pipeline Performance Analysis
n With the bad data path (3, 3 stage multipliers and 2

stages after that; multiple pixels at a time)

•s•••vvv•••5

•sss•••vvv4

•••sss•••3

•••sss2

•••1

Add2Add1M3cM2cM1cM3bM2bM1bM3aM2aM1aClk

n We approach 100% utilization if there are no stalls or
dependencies and we can keep getting new data

EE183 Lecture 8 - Slide 19

What performance is required?
n Replication and Pipelining are not trivial

to implement—make sure you need them
n Is either needed for Lab #2?
n How would you tell?
n Hint: each Julia image takes at most

(64*64*64*7*1/50e6) = 0.036s to create.
n Is this “real-time” enough for an animation?
n Other issues? Need to meet timing for the

VGA.

EE183 Lecture 8 - Slide 20

What do we expect
n The previous data path is terribly inefficient if

you only put one pixel through at a time, but
doing multiple pixels at once is very
complicated

n As an alternative you can use one multiplier and
put your x*x, y*y, and x*y through it in a
pipelined manner.

n What’s the efficiency? Is it a good tradeoff for
area/speed? This analysis is critical!

6

EE183 Lecture 8 - Slide 21

Pipeline Performance Analysis
n Single multiplier, put x2 (•) through first, then

y2 (s), then x•y(•).

•7

•6

•5

s•4

•s•3

•s2

•1

Add2Add1McMbMaClk
n In 7 cycles we use 11/35

functional units = 31%
n But we only have 1

multiplier
n How much space do we

save? What is most
important?

EE183 Lecture 8 - Slide 22

Pipeline Performance
Conclusions

n You need to know your algorithm and
what tradeoffs you are making

n What do you care about?
n Speed?
n Area?
n Both.

(Power is a function of speed and number of
transistors, i.e., area.)

EE183 Lecture 8 - Slide 23

Zooming
n An arbitrary portion of the screen can be described in

many ways. Here are two:
n Xmin, Xmax, Ymin, Ymax

n Requires dividing by the number of pixels
n Xorigin, Yorigin, scale

n Requires a fixed number of pixels
n Hints for Zooming:

n Have registers with the X, Y origins and increment/decrement
them with the up/down, left/right buttons

n Have a scale register which goes up/down with the zooming
in/out

n When converting form 0..63 to -2.00 to 2.00 use the scale and
origin to calculate the new value

EE183 Lecture 8 - Slide 24

7

EE183 Lecture 8 - Slide 25

Lecture 6 Key Points
n Pipelining increases the clock speed but

decreases the amount of work per clock
n Parallelism is easy except for resource

conflicts
n Logistics
n Lab 2 Prelab due Friday by 5pm

email URL to Joel
n Visiting lecturer next Monday – contents will

be on the quiz

