
1

Lecture 7: Lab 2 &
Pipelining

David Black-Schaffer
davidbbs@stanford.edu

EE183 Spring 2003

EE183 Lecture 7 - Slide 2

Overview
n Fixed Point

n Determine your number format from the matlab code
(what’s the largest number you get?)

n Map the -2 to 2 plane to a 0 to 63 screen by extracting
bits and choosing a binary point

n Fixed point notation is just a different interpretation
(same counting)

n Pipelining
n If it won’t fit in one clock cycle you have to divide it

up so each stage will fit
n The control logic must be designed with this in mind
n Make sure you need it

EE183 Lecture 7 - Slide 3

Public Service Announcement

n Xilinx Programmable World
n Tuesday, May 6th
n http://www.xilinx.com/events/pw2003/index.htm

n Guest Lectures
n Monday, April 28th

Ryan Donohue on Metastability and
Synchronization

n Wednesday, May 7th
Gary Spivey on ASIC & FPGA Design for Speed

n The content of these lectures will be on the Quiz

EE183 Lecture 7 - Slide 4

Logistics
n Writeup for Lab 1 due tonight at

midnight.
n If you haven’t finished Lab 1 let us know

what’s up — getting behind now can be a
real problem later!

n Lab 2 Prelab due Friday by 5pm
n Guest lecture next Monday: SHOW UP!

(please!)

2

EE183 Lecture 7 - Slide 5

Lab 2 Requirements
n Pipelined calculation of a 64x64x4-bit fractal from

-2 to 2 in the real and imaginary planes
n Switch display between Mandelbrot and Julia set
n Julia set constants chosen by the position of a

blinking cursor as in lab 1
n You must have at least one of:

n Animation around an “interesting” path for the Julia set
n Zoom in/out capability (much cooler)

n Encouraged:
n Color animation
n Parallel computation

EE183 Lecture 7 - Slide 6

Key Concepts for Lab 2
n Data path and control path separation

n Fixed calculation path
n Standard FSM control

n Fixed-point math
n Counting is the same, it’s just a matter or interpretation
n 0 to 64 counts the same as 0.00 to 4.00 in binary

n Pipelining
n What if it doesn’t all fit in one clock cycle? (20ns)
n Split it up into chunks with pipeline registers between them

n Parallelism
n How much can you calculate at the same time?
n Conflicts in accessing shared resources? (RAM)

EE183 Lecture 7 - Slide 7

Mandelbrot Fractal
n The Mandelbrot set is the set of points in the complex

c-plane that do not go to infinity when iterating
zn+1 = zn

2 + c starting with z = 0. One can avoid the use of
complex numbers by using z = x + iy and c = a + ib, and
computing the orbits in the ab-plane for the 2-D mapping

xn+1 = xn
2 - yn

2 + a
yn+1 = 2xnyn + b

with initial conditions x = y = 0 (or equivalently x = a and
y = b). It can be proved that the orbits are unbounded if
|z| > 2 (i.e., x2 + y2 > 4).

EE183 Lecture 7 - Slide 8

Not Really Complicated
Really just iterate over the -2 to 2 real (x) and

imaginary (y) planes (i.e., the screen)
repeatedly calculating:

xn+1 = xn
2 - yn

2 + a
yn+1 = 2xnyn + b

Until x2 + y2 > 4 or the number of iterations
is > 64. Then the number of iterations it
took is what you display at that location
on a 64x64x4-bit display.

3

EE183 Lecture 7 - Slide 9

Complicated bits

n How do we do the multiplication?
n How do we get the numbers -2 to 2 to map

to a screen 64 pixels wide? Fractions!?
n How do we zoom in?
n How do we make it run fast?

EE183 Lecture 7 - Slide 10

Data Path
Xn Yn

** *

- +<<1

Y n+1X n+1

++ If>4 output 1

Mux Mux

Julia YJulia XMandel X Mandel X

Feedback for next iteration

xn
2 yn

2yn•xn

xn
2-yn

2

xn+1=xn
2-yn

2+a

2•yn•xn

yn+1=2•yn•xn+b

EE183 Lecture 7 - Slide 11

Fixed Point Examples
n Twos-complement numbers just work
n It all depends on how you interpret the binary

point

n What is this? Shift binary point left 3 places?
Divide by 8 when interpreting!

3.3 Notation:
000.110 +0.75
101.100 -2.50
110.010 -1.75

6.0 Notation:
000110. +6
101100. -20
110010. -14

EE183 Lecture 7 - Slide 12

Fixed Point Math
n Addition/Subtraction as normal if you use

twos-complement!
n Any reason not to use it?
n None that I can think of.

n Multiplication works as normal if you select
the right thing in CoreGen

n 8-bit multiplier takes in two 8-bit numbers
and outputs a 16-bit result
n What do you keep?
n How big/small is the result?

4

EE183 Lecture 7 - Slide 13

Fixed Point Partition?
n How big should the integer part or fractional part be?

n As small as possible to keep the multipliers small and fast
n Not so small that we loose precision or overflow

n Key insight:
We stop the loop when magnitude is greater than 4
n Use that knowledge to approximate size of intermediate operands
n Run a matlab simulation and figure out the largest value

n You all know matlab, right?
n What about zooming?

n Need more precision?
n How much?

EE183 Lecture 7 - Slide 14

Tricky Bit
n We have a 64x64 pixel screen. We want to map

this to -2 to 2. How do we do that?
n Hint:

n Counting from 0 to 64 goes
0000000. to 0111111. in 7.0 notation

n Counting from 0.00 to 4.00 goes
000.0000 to 011.1111 in 3.4 notation

n What’s the difference? Only your interpretation of
where the binary point is different.

n So 0 to 64 is the same as 0.00 to 4.00,
but we want -2.00 to 2.00

n What can you do to easily fix that?

EE183 Lecture 7 - Slide 15

Pipelining

n What do we do if the whole data path
doesn’t fit in 20ns?

EE183 Lecture 7 - Slide 16

Pipelining Example 1
Xn Yn

** *

- +<<1

Y n+1X n+1

++ If>4 output 1

Mux Mux

Julia YJulia XMandel X Mandel X

Feedback for next iteration

12ns

6ns

6ns

2ns 12ns 12ns 2ns

1ns 6ns

3nsCritical Path: 24ns
Too slow!

How long does this wire take?

5

EE183 Lecture 7 - Slide 17

Pipelining

n What do we do if the whole data path
doesn’t fit in 20ns?

n Split it up into smaller chunks with
registers between them so our register-to-
register time fits in 20ns.

n Each chunk does less but finishes faster
n Gets our clock speed up, but takes more

clocks (remember the P4 vs. P3 example)

EE183 Lecture 7 - Slide 18

Pipelining Example 2
Xn Yn

** *

- +<<1

Y n+1X n+1

++ If>4 output 1

Mux Mux

Julia YJulia XMandel X Mandel X

Feedback for next iteration

12ns

6ns

6ns

2ns 12ns 12ns 2ns

1ns 6ns

3ns

Pipeline
Registers

Critical path
12ns

Critical path
12ns

How long does this wire take?

Critical path
12ns+??ns

EE183 Lecture 7 - Slide 19

What next?

n It’s still too slow…
n Add more pipeline stages!
n Where?
n Where ever the critical path is > one clock

cycle
n However, try to keep each stage the same

length

EE183 Lecture 7 - Slide 20

Pipelining Example 3
Xn Yn

** *

- +<<1

Y n+1X n+1

++ If>4 output 1

Mux Mux

Julia YJulia XMandel X Mandel X

Feedback for next iteration

12ns

6ns

6ns

2ns 12ns 12ns 2ns

1ns 6ns

3ns

Pipeline
Registers

Critical path
12ns

Critical path
6ns + ??ns

Pipeline
Registers

Critical path
6ns

6

EE183 Lecture 7 - Slide 21

Latency and Throughput

One result every 20ns
after a 2 cycle delay.

Time Input Output
t=0 A1
t=50ns A2 A1
t=100ns A3 A2
t=150ns A3

Comb. Logic
Input Output

50ns critical path
1 stage

Not Pipelined

Time Input S1 Output
t=0 A1
t=20ns A2 A1
t=40ns A3 A2 A1
t=60ns A3 A2
t=80ns A3

Input Output

<20ns critical path
3 stages

Pipelined
S1

EE183 Lecture 7 - Slide 22

Key points on Pipelining
n Insert the next data item into the datapath before

the previous one has finished
n PipeRegisters keep the computation separate
n Increases utilization for operators
n What is the effect of the algorithm feeding back

on itself?
n Do all iterations have the same number of iterations?

n How to manage this in Lab 1?
n More complicated control logic?

EE183 Lecture 7 - Slide 23

Issues with Pipelining
n Throughput

n It now takes n cycles to get a result
n Can we put in n calculations at once?

n Conflicts? Forwarding? Lab 2 has conflicts…
n Latency vs. Throughput — you must understand the needs of

your algorithm!
n Difficulty

n Non-trivial to implement
n Make sure you need it!
n For lab 2, do you need it?

EE183 Lecture 7 - Slide 24

Multipliers
n CoreGen gives you several pipelining options
n Which is best?

n Depends on your design
n How fast are they?

n Depends on the size
n Look at the spec sheets or run the timing tools.

n Remember that routing delay will depend on your
final design!

7

EE183 Lecture 7 - Slide 25

Pipelining Summary

n Make each stage shorter to get a higher
clock speed…

 but do less in each stage…
 so, we need to put multiple calculations

through at the same time to get higher
performance out of it…

 more complicated control and…
 data hazards!

EE183 Lecture 7 - Slide 26

Parallelism

n Divide up the problem into multiple
problems that can be solved
simultaneously

n If they are identical then just instantiate
multiple copies of the hardware

n Easy, if there are no resource conflicts

EE183 Lecture 7 - Slide 27

Resource Conflicts
n For Lab 2, multiple calculation units will

need to write back to the same RAM.
n When they need to write back at the same

time what do you do?
n Priority scheme: delay one? Which?
n Avoid starvation. (Round-robin, token)

n Do we care for lab 2?
n How often will they be competing?
n Know your algorithm. Simulation.

EE183 Lecture 7 - Slide 28

Lecture 6 Key Points
n Fixed-point numbers are the same as regular

twos-complement numbers except for how you
interpret the placement of the binary point.

n Pipelining increases the clock speed but
decreases the amount of work per clock

n Parallelism is easy except for resource conflicts
n Logistics

n Lab 1 Writeup due tonight at midnight URL to Joel
n Visiting lecturer next Monday – contents will be on

the quiz

