Lecture 7: Lab 2 \& Pipelining

David Black-Schaffer davidbbs@stanford.edu
EE183 Spring 2003

Public Service Announcement

- Xilinx Programmable World
- Tuesday, May 6th
- http:/ / www.xilinx.com/events/pw2003/index.htm
- Guest Lectures
- Monday, April 28th

Ryan Donohue on Metastability and
Synchronization

- Wednesday, May 7th

Gary Spivey on ASIC \& FPGA Design for Speed

- The content of these lectures will be on the Quiz

EE183 Lecture 7 - Slide 3

Overview
 Overview

- Fixed Point
- Determine your number format from the matlab code (what's the largest number you get?)
- Map the -2 to 2 plane to a 0 to 63 screen by extracting bits and choosing a binary point
- Fixed point notation is just a different interpretation (same counting)
- Pipelining
- If it won't fit in one clock cycle you have to divide it up so each stage will fit
- The control logic must be designed with this in mind
- Make sure you need it

EE183 Lecture 7 - Slide 2

Lab 2 Requirements

- Pipelined calculation of a $64 \times 64 \times 4$-bit fractal from -2 to 2 in the real and imaginary planes
- Switch display between Mandelbrot and Julia set
- Julia set constants chosen by the position of a blinking cursor as in lab 1
- You must have at least one of:
- Animation around an "interesting" path for the Julia set
- Zoom in/ out capability (much cooler)
- Encouraged:
- Color animation
- Parallel computation

EE183 Lecture 7 - Slide 5

Key Concepts for Lab 2

- Data path and control path separation
- Fixed calculation path
- Standard FSM control
- Fixed-point math
- Counting is the same, it's just a matter or interpretation
- 0 to 64 counts the same as 0.00 to 4.00 in binary
- Pipelining
- What if it doesn't all fit in one clock cycle? (20ns)
- Split it up into chunks with pipeline registers between them
- Parallelism
- How much can you calculate at the same time?
- Conflicts in accessing shared resources? (RAM)

Mandelbrot Fractal

- The Mandelbrot set is the set of points in the complex c-plane that do not go to infinity when iterating
$z_{n+1}=z_{n}^{2}+c$ starting with $z=0$. One can avoid the use of complex numbers by using $z=x+i y$ and $c=a+i b$, and computing the orbits in the $a b$-plane for the 2-D mapping

$$
\begin{aligned}
& x_{n+1}=x_{n}{ }^{2}-y_{n}{ }^{2}+a \\
& n
\end{aligned}
$$

$$
y_{n+1}=2 x_{n} y_{n}+b
$$

with initial conditions $x=y=0$ (or equivalently $x=a$ and $y=b$). It can be proved that the orbits are unbounded if $|z|>2$ (i.e., $x^{2}+y^{2}>4$).

EE183 Lecture 7 - Slide 7

Not Really Complicated

Really just iterate over the -2 to 2 real (x) and imaginary (y) planes (i.e., the screen) repeatedly calculating:

$$
\begin{aligned}
& x_{n+1}=x_{n}{ }^{2}-y_{n}{ }^{2}+a \\
& y_{n+1}=2 x_{n} y_{n}+b
\end{aligned}
$$

Until $x^{2}+y^{2}>4$ or the number of iterations is >64. Then the number of iterations it took is what you display at that location on a $64 \times 64 \times 4$-bit display.

EE183 Lecture 7 - Slide 8

Complicated bits

- How do we do the multiplication?
- How do we get the numbers -2 to 2 to map to a screen 64 pixels wide? Fractions!?
- How do we zoom in?
- How do we make it run fast?

Fixed Point Examples

- Twos-complement numbers just work
- It all depends on how you interpret the binary point

3.3 Notation:	6.0 Notation:		
000.110	+0.75	000110.	+6
$\underline{101.100}$	$\underline{-2.50}$	$\underline{101100 .}$	$\underline{-20}$
110.010	-1.75	110010.	-14

- What is this? Shift binary point left 3 places? Divide by 8 when interpreting!

EE183 Lecture 7 - Slide 11

Fixed Point Math

- Addition/Subtraction as normal if you use twos-complement!
- Any reason not to use it?
- None that I can think of.
- Multiplication works as normal if you select the right thing in CoreGen
- 8-bit multiplier takes in two 8-bit numbers and outputs a 16 -bit result
- What do you keep?
- How big/small is the result? EE183 Lecture 7 - Slide 12

Fixed Point Partition?

- How big should the integer part or fractional part be?
- As small as possible to keep the multipliers small and fast
- Not so small that we loose precision or overflow
- Key insight:

We stop the loop when magnitude is greater than 4

- Use that knowledge to approximate size of intermediate operands
- Run a matlab simulation and figure out the largest value - You all know matlab, right?
- What about zooming?
- Need more precision?
- How much?

EE183 Lecture 7 - Slide 13

Tricky Bit

- We have a 64×64 pixel screen. We want to map this to -2 to 2 . How do we do that?
- Hint:
- Counting from 0 to 64 goes $\mathbf{0 0 0 0 0 0 0}$. to $\mathbf{0 1 1 1 1 1 1}$. in 7.0 notation
- Counting from 0.00 to 4.00 goes 000.0000 to 011.1111 in 3.4 notation
- What's the difference? Only your interpretation of where the binary point is different.
- So 0 to 64 is the same as 0.00 to 4.00 ,
but we want - 2.00 to 2.00
- What can you do to easily fix that?

EE183 Lecture 7 - Slide 14

Pipelining

- What do we do if the whole data path doesn't fit in 20ns?

Pipelining Example 1

Pipelining

- What do we do if the whole data path doesn't fit in 20ns?
- Split it up into smaller chunks with registers between them so our register-toregister time fits in 20 ns .
- Each chunk does less but finishes faster
- Gets our clock speed up, but takes more clocks (remember the P4 vs. P3 example)

EE183 Lecture 7 - Slide 17

Pipelining Example 2

Pipelining Example 3

Feedback for next iteration

Key points on Pipelining

- Insert the next data item into the datapath before the previous one has finished
- PipeRegisters keep the computation separate
- Increases utilization for operators
- What is the effect of the algorithm feeding back on itself?
- Do all iterations have the same number of iterations?
- How to manage this in Lab 1?
- More complicated control logic?

EE 183 Lecture 7 - Slide 22

Issues with Pipelining

- Throughput
- It now takes n cycles to get a result
- Can we put in n calculations at once?
- Conflicts? Forwarding? Lab 2 has conflicts..
- Latency vs. Throughput - you must understand the needs of your algorithm!
- Difficulty
- Non-trivial to implement
- Make sure you need it!
- For lab 2, do you need it?

Multipliers

- CoreGen gives you several pipelining options
- Which is best?
- Depends on your design
- How fast are they?
- Depends on the size
- Look at the spec sheets or run the timing tools.
- Remember that routing delay will depend on your final design!

Pipelining Summary

- Make each stage shorter to get a higher clock speed...
but do less in each stage...
so, we need to put multiple calculations through at the same time to get higher performance out of it...
more complicated control and...
data hazards!

EE183 Lecture 7 - Slide 25

Parallelism

- Divide up the problem into multiple problems that can be solved simultaneously
- If they are identical then just instantiate multiple copies of the hardware
- Easy, if there are no resource conflicts

[^0]
Resource Conflicts

- For Lab 2, multiple calculation units will need to write back to the same RAM.
- When they need to write back at the same time what do you do?
- Priority scheme: delay one? Which?
- Avoid starvation. (Round-robin, token)
- Do we care for lab 2?
- How often will they be competing?
- Know your algorithm. Simulation.

EE183 Lecture 7 - Slide 27

Lecture 6 Key Points

- Fixed-point numbers are the same as regular twos-complement numbers except for how you interpret the placement of the binary point.
- Pipelining increases the clock speed but decreases the amount of work per clock
- Parallelism is easy except for resource conflicts
- Logistics
- Lab 1 Writeup due tonight at midnight URL to Joel
- Visiting lecturer next Monday - contents will be on the quiz

EE183 Lecture 7 - Slide 28

[^0]: EE183 Lecture 7 - Slide 26

