
1

Lecture 10:
Memory-mapped I/O

and Lab 4
David Black-Schaffer

davidbbs@stanford.edu
EE183 Spring 2003

EE183 Lecture 10 - Slide 2

Overview
n Pipelining in Lab 3/4
n Do a little bit of work in each stage (fast)
n Keep the control simple by passing it down

the pipeline
n Deal with Data Hazards through forwarding

n Memory-mapped I/O
n MUX the data lines based on the address
n Use LOAD/STORE to special addresses to

transfer data between external devices

EE183 Lecture 10 - Slide 3

Public Service Announcement

n Xilinx Programmable World
n Tomorrow, May 6th
n http://www.xilinx.com/events/pw2003/index.htm -

free!
n Guest Lecture

n Wednesday, May 7th
Gary Spivey on ASIC & FPGA Design for Speed

n Also, they are hiring. Info session in Tressider at
noon.

EE183 Lecture 10 - Slide 4

Logistics
n Lab 2 writeup due tonight by midnight

n Very cool guest lecture tomorrow… (want
to break that 200MHz barrier in lab 3? ;)

n Next Monday is the last lecture.

2

EE183 Lecture 10 - Slide 5

Xn Yn

** *

- +<<1

Y n+1X n+1

++ If>4 output 1

Mux Mux

Julia YJulia XMandel X Mandel X

Pipeline
Registers

Pipeline
Registers

** *

** *

Pipeline
Registers

Pipeline
Registers

EE183 Lecture 10 - Slide 6

Overview

PC IROM CNTRL

REG
FILE

FWD

DRAM

I Stage R Stage E Stage W Stage

Instruction
Storage
(IROM)

Math and
Boolean Logic
(ALU)

Control
Transfer
(Jumps)

Registers
Memory
(RAM)

EE183 Lecture 10 - Slide 7

Instruction Format

n Different for different types of instructions

n ALU instructions (similar to others):

n See Lab 3 handout

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1
0 1 WC OP RA RB

Writeback
Register

Operation
Code

Source
Register A

Source
Register B

EE183 Lecture 10 - Slide 8

Example: R3=R1+R2

PC IROM CNTRL

REG
FILE

FWD

DRAM

I Stage R Stage E Stage W Stage

ADD R1 R2 R3

3

EE183 Lecture 10 - Slide 9

Example: R3=R1+R2

PC IROM CNTRL

REG
FILE

FWD

DRAM

I Stage R Stage E Stage W Stage

ADD R1 R2 R3
R1=x

R2=y

ADD

EE183 Lecture 10 - Slide 10

Example: R3=R1+R2

PC IROM CNTRL

REG
FILE

FWD

DRAM

I Stage R Stage E Stage W Stage

ADD R1 R2 R3
R3=x+y

writeback
x+y to R3

EE183 Lecture 10 - Slide 11

Example: R3=R1+R2

PC IROM CNTRL

REG
FILE

FWD

DRAM

I Stage R Stage E Stage W Stage

ADD R1 R2 R3

ADD R1 R2 R3
R1=x

ADD R1 R2 R3
R3=x+y

R2=y

ADD

writeback
x+y to R3

EE183 Lecture 10 - Slide 12

Notes

n Do a little bit of the work in each stage
n Carry it along through the pipeline

registers
n We want each stage to be as fast as

possible and as independent as possible
n Can we do this?
n Not entirely…

4

EE183 Lecture 10 - Slide 13

Jumps - Control Hazards

PC IROM CNTRL

REG
FILE

FWD

DRAM

I Stage R Stage E Stage W Stage

JUM
P.ZERO

ADD R1 R2 R3
R1=x

SUB R4 R5 R6
R6=q-r

R2=y

writeback
x+y to R3

Whatever is in the I
stage gets executed
regardless of the jump.

EE183 Lecture 10 - Slide 14

Control Hazards Solution

n Insert a NOP after each branch statement
(JUMP)

n Now we don’t care if the next instruction
is executed because it never does anything

EE183 Lecture 10 - Slide 15

Data Hazards

PC IROM CNTRL

REG
FILE

FWD

DRAM

I Stage R Stage E Stage W Stage

ADD R1 R2 R3
R1=x

R2=y

ADD

Instruction n

SUB R4 R5 R2
R2=q-z

Instruction n-1

EE183 Lecture 10 - Slide 16

Data Hazards

PC IROM CNTRL

REG
FILE

FWD

DRAM

I Stage R Stage E Stage W Stage

ADD R1 R2 R3
R1=x

R2=y

ADD

Instruction n

SUB R4 R5 R2
R2=q-z

Instruction n-1
Destination of instruction n-1
is the same as source of
instruction n -> Data Hazard

Forward the data from the
previous instruction.

5

EE183 Lecture 10 - Slide 17

Tricky Parts

n Prelab for Lab 3:

n Forwarding logic
n Really only a few cases, but it takes a bit of

thinking to work it out
n Branching (Jump) logic:
n Not too complicated either, but if you get it

wrong it will be hard to debug

EE183 Lecture 10 - Slide 18

Lab 3 Requirements
n Implement the processor with forwarding
n Demo the three test programs

n Output the result register to the LEDs
n Implement a Timer

n Free-running counter which the processor can use to
do things at a specified interval much like the slow
clock in Labs 1/2.

n Can be either a new JUMP condition or a memory-
mapped device

n Implement a memory-mapped VGA display
n Demo a program which uses the VGA and

Timer

EE183 Lecture 10 - Slide 19

Today

n Memory-mapped I/O
n Final Project (Lab 4)

EE183 Lecture 10 - Slide 20

Processor I/O

ADDR DATA IROM_DATA

EXT_COND

RESET

ADDR

DATA

ADDR DATA

INPUTS OUTPUTS

IROM_ADDR

IROM CPU

SRAM

Memory
(RAM)

External
I/O

EXT_COND:
must add a new
instruction for
every device

Memory-Mapped:
Re-route the data based
on the read/write address

6

EE183 Lecture 10 - Slide 21

Memory-mapped I/O
n Add logic to look for LOAD/STORE to a

particular address/range of addresses
n Re-route the signals to the external device

n Example:
n If I do a STORE to 0xFFF then send that data

not to the DRAM but to the VGA
n If I do a LOAD from 0xFFD then take the data

not from the DRAM but from the Timer

EE183 Lecture 10 - Slide 22

Implementation

n Simple: look at the RAM address bus and
re-route the data and RE/WE signals
based on the address (some MUXes)

n Have the external devices respond to these
signals to send/receive data

EE183 Lecture 10 - Slide 23

Usage
LOADLIT R1, 0xfff # Define our VGA memory-mapped

 # address for sending the VGA
 # {x,y} to the VGA module

ZEROS R0 # Initialize our {x,y} to zero
Loop writing to the VGA
_LOOP
STORE R1, R0 # Write the value of R0 to the VGA

this is our {x,y} location
INCA R0, R0 # Increment the {x,y} location
JUMP _LOOP

n How do we control the color?
EE183 Lecture 10 - Slide 24

Color

n Instead of just one VGA location {x,y}
address, let’s have two:
0xFFF - VGA {x,y} {6-bits x,6-bits y}
0xFFE - VGA color (4-bits)

n Now the VGA module is more
complicated, but we can control the color

7

EE183 Lecture 10 - Slide 25

Usage
LOADLIT R1, 0xfff # Define our VGA memory-mapped

 # addresss the VGA {x,y}
LOADLIT R2, 0xffe # and the VGA color

LOADLIT R3, 0x001 # Define a constant for our color

ZEROS R0 # Initialize our {x,y} to zero
Loop writing to the VGA
_LOOP
STORE R1, R0 # Write the value of R0 to the VGA

this is our {x,y} location
STORE R2, R3 # Write the color to the VGA

INCA R0, R0 # Increment the {x,y} location
JUMP _LOOP

EE183 Lecture 10 - Slide 26

Memory-Mapped I/O
n Route the STORE/LOAD data to different

places based on the address of the
STORE/LOAD

n Bunch of MUXes on the Address/Data
lines

n Good way to communicate with many
devices (PCI works this way)

n Works better with Tri-stated lines

EE183 Lecture 10 - Slide 27

Memory-Mapped I/O

Any questions?

EE183 Lecture 10 - Slide 28

EE183 Final Project
n Final Project = Lab 4
n Extend Lab 3 processor to add functionality and

increase performance
n 20 additional points on grading for difficulty

n Final demo program

n Two main parts
n Additional Instructions (JAL/JR)
n Something cool…

8

EE183 Lecture 10 - Slide 29

EE183 Final Projects (Lab 4)

n Part 1: Add JR (jump register) and
 JAL (jump-and-link) to the processor
n JAL can have a fixed register to write to, but

JR must take an arbitrary register
n Find a good place in the ISA to encode these

instructions
n Modify the assembler
n Produce a simple demo program

EE183 Lecture 10 - Slide 30

EE183 Final Projects (Lab 4)
n Part 2: extend & use the processor
n Three options:

n Accelerate a slow software process in hardware
(DES, FIR filters, fractals, cache, graphics, etc.)

n Interface to some external hardware in a cool manner
(keyboards, audio, video, etc.)

n Something else cool
n Lab 4 pre-lab due Wed. May 21

n Overview of what you are going to do and how
n Talk to us about how doable your project is first!

EE183 Lecture 10 - Slide 31

Goals for Lab 4

n Accelerate:
n Quantitatively assess the performance of

your implementation
n Performance registers to measure

effectiveness
n Compare to other (possible) implementations

n Works very nicely for implementing the
fractal lab on the processor

EE183 Lecture 10 - Slide 32

Goals for Lab 4
n Interface:

n Better be something pretty cool
n Show how the processor works in the system. (I.e., if

it can be better done without a processor then it isn’t a
good project.)

n Elegant interface to the processor.
n Probably a memory-mapped interface, but make it a

smart one.

n Nice for audio filters/keyboard interfaces/graphics

9

EE183 Lecture 10 - Slide 33

Goals for Lab 4

n Something else cool:
n Really cool
n If you’re excited about it come talk to us and

we’ll see if it is a good project
n Wide open…

EE183 Lecture 10 - Slide 34

Midterm

n Don’t forget the midterm a week from this
Wednesday.

n 7-9pm in SEQ 102 (next door)

n 45 minute “quiz”
n On the material in the lectures.

EE183 Lecture 10 - Slide 35

Lecture 6 Key Points
n Pass intermediate results and control info

down the pipeline to make it simple
n MUX the RAM data lines based on the

address to interface to external devices

n Logistics
n Guest lecture on Speed on Wed.
n Xilinx Programmable World tomorrow
n Last EE183 Lecture ever next Monday

