
1

Lecture #10: Lab 3
The Infamous EE183 Pipelined Processor

Paul Hartke
Phartke@stanford.edu

Stanford EE183
May 8, 2002

Lab Stuff

• Lab #2 due TODAYTODAY at midnight.
• Paul in lab after class and in the lab at 11pm

or so for demos.
• Any questions?

2

Processor Overview

• 12-bit RISC Microcontroller
– What would having only 8 bits mean for the memory

architecture?
• 4 or 8 General Purpose Registers

– 4 back in the days when we had a small FPGA ☺
• 43 Instructions
• 3 operand instructions
• 4 stage pipeline
• Register indirect addressing mode

– What does this mean?

Motivation

• Illustrate many datapath and control issues
already discussed in class

• Complex enough to be “interesting”
• Simple enough to complete in 2 weeks
• Pipelining is an important technique in

digital design
•• Exciting!Exciting! Tell your friends and look cool at

dinner parties

3

Processor Overview

ADDR DATA IROM_DATA

EXT_COND

RESET

ADDR

DATA

ADDR DATA

INPUTS OUTPUTS

IROM_ADDR

IROM CPU

SRAM

Instruction Set Architecture
(ISA)

• 8 General Purpose Registers
• ALU Instructions

– 28 Instructions
– 3 operands

• Control Transfer Instructions
– 12 Instructions
– Conditional/Unconditional branches

• Memory Instructions
– 2 instructions
– Load/Store

4

Instruction Formats

• (Save trees and look at the Lab 3 handout)

Instruction Execution Steps

• 4 Step Sequence
• Step I Fetch instruction from Instruction Memory
• Step R Read operands from registers (A, B)
• Step E Execute instruction, set condition codes
• Step W Write results to register C

• One stage per step
• Each instruction goes through all four stages

– Assume each stage takes one clock cycle

5

Pipeline

Pipelined CPU Block Diagram

PC IROM CNTRL

REG
FILE

FWD

DRAM

I Stage R Stage E Stage W Stage

6

Bypassing/Forwarding

• Given the following code fragment
ADD R1, R2, R3
SUB R4, R1, R5
XXX
YYY

• What’s going on
in the pipeline?

• How many different types of data hazards are
there?

Control Transfer
• Code fragment

00 ADD R1, R2, R3
01 JT.ZERO _taken
02 SUB R4, R5, R6
03 AND R7, R8, R1
…
_taken 11 NOR R7, R8, R1

• Branch Taken vs. Branch Not Taken

7

ASM183 (Assembler)

What do you get?

• Lab 3 Verilog
– A lot of verilog given
– Look through ALL of it

• Some are not instantiated in the Lab 3 schematic
– –e.g. boolean.v

• ASM183
– Perl assembler
– Perl Handout

• How many already know perl?

