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Digital Communications: Line Codes and Pulse Shaping

> Review

» Line codes
» Pulse width and polarity

» Power spectral density
» Intersymbol interference (ISI)
» Pulse shaping to reduce ISI
» Embracing ISI

Based on lecture notes from John Gill



Line Code Examples, from last time ...

Bits 1 1 1 0 0 1 0 1 1 0 1 0
on-oft@z  ALLLLLL L1 . T101 | [1 -
Polar (R2) W

Bipolar/AMI (RZ) L+l l—— L l_%_l —1 -
On-Off (NRZ) 'ﬁ:.::':':':.":'::t
polarNRz) o+ 1 1 T T

RZ = Return to Zero NRZ = Non-Return to Zero



Line Code Examples, from last time ...
Features we would like

» Minimum bandwidth (NRZ)

> Easy clock recovery (RZ)

» Frequently, no DC value (bipolar pulses)



PSD of Line Codes

>

The PSD of a line code depends on the shapes of the pulses that
correspond to digital values. Assume the pulses p(t) are amplitude
modulated (PAM),

p(t) :

0 T
y(t) [\b e [\
e \/ t

The transmitted signal is the sum of weighted, shifted pulses.

[e.e]

y(t) = > app(t — kT})

k=—00

where T}, is spacing between pulses.

Pulse may be wider than T3, which leads to inter-symbol interference
(IS1). We will look at this case shortly.



PSD of Line Codes (cont.)

>

| 2

PSD depends on pulse shape, rate, and digital values {ay}.

We can simplify analysis by representing y(t¢) as impulse train convolved

with p(t)
S B \/ -

i aed(t — kTy) p(t)
% A f
* l t* 0 T

Then Y (f) = P(f)X(f), and the PSD of y(t) is
Sy(f) = [P(f)PSa(f)
P(f) depends only on the pulse, independent of digital values or rate.

Sz (f) increases linearly with rate 1/T}, and depends on distribution of
values of {a;}. E.g., ar = 1 for all k£ has narrower PSD.



Power Spectral Density of Line Codes (review)

» In general, the PSD of a line code is
Sy(f) = [P(f)I? Su(f)
where

Sz(f) = F{R:(t)} = 11}7 i R, e~ 2Ty

n=—oo

o) - |
Sy(f) = IP(f)P (Tb > Rne—J"%fTb>
n=—oc0
In many cases, only Ry # 0, or just a few terms are not equal to zero.
» We would like to limit the bandwidth of the transmitted signal
> Modify P(f)
> Modify z(t)



P(f) for RZ and NRZ Pulses
» NRZ (100% pulse)
p(t) = I(t/Ty)
P(f) = Tysinc(nTyf)
[P(HPF = Tisinc*(nTyf)
» RZ half-width:
p(t) = M(t/(Ty/2))

P(f) = %Tbsinc(%Wbe)
|P(f)I? = 317 sinc*(37T5f)
P(f) &
HanE
" -T, 0 Tt 2N _AhHh 0 IN_“ZhH f
o Ti/2

Rz

T Iyt —=%f  —f 0 fo 2f~4£



Modifying x(t)
Polar signaling. Transmit 1 as +p(t), and 0 as —p(¢),

1

-1 t

Only Ry # 0, and

PN, [P
T, T, M= Ty

Sy(f) =

The PSD of polar signaling depends only on the spectrum of p(t).



Modifying x(t), continued

Bipolar signaling. Transmit 1's as alternating +p(t), and 0’s as 0.

Bits 1 1 1 0o 0 1 0o 1 1 0 1 0
Bipolar/AMI (R2) W
Bipola/AMINRZ) [, 1, . . [ [, .

C ] .

Bipolar signaling for full-width (NRZ) pulses.

2
Sy(f) = |P(I{,)’ sinz(ﬂbe) =T sian(Wbe) sin2(7rbe)

For half-width (RZ) pulses:
S, (f) = 22 gine? <17rfT> sin®(n Ty f)
y 4 2 b b

The PSD depends on P(f), but decays more rapidly due to the sin?(-)
terms.



Modifying p(t)

Split phase, or Manchester encoding,

The PSD is

S(f) = IP()P (; > Rnej"2”fTb)

n=-—00



Comparison of PSD’s
RZ Polar, NRZ Bipolar, and Split Phase

A
4 Bipolar
1 Polar
Jo = T o Split Phase
T A,
= ——— >
—2f —Jo 0 o 21

NRZ Bipolar would look like Split Phase.



PSD of Polar Signaling (Matlab Experiment)

N=1 N =10
1.5 1.5
1 1
0.5 0.5
0 )
-3 -2 -1 o] 1 2 3 -3 -2 -1 o
N =100 N = 1000
1.5 1.5

N = 10000 N = 100000




Pulse Shaping

>

So far, we've assumed all of the pulses are square pulses, either 50% or
100% of the pulse spacing.

We can use other pulses, all we care is that the waveform have the right
value at the samples!
Bits i 11 0 01 01 1 0 1 O

Signal .
t
samplr t + t F A A E A EY,

t
P S, SN |

Received-;-..¢..$..:>

Lower
Bandwidth%.__v%&_,
Alternative t
How do we design the waveform so that it passes through the samples,
and has minimum bandwidth?

This is a lot like the sampling reconstruction problem, except we only
care about the values at the sample points.



Reducing ISI: Pulse Shaping

P> A time-limited pulse cannot be bandlimited

P Linear channel distortion results in spread out, overlapping pulses
» Nyquist introduced three criteria for dealing with ISI.

The first criterion was that each pulse is zero at the sampling time of

other pulses.
(t) 1 t=0
p =
0 t==4kTp, k==%1,+£2,...

~q PN o p(t ka)
N7 N \
< < \
/’ \ SN \
\ \ _t
\ A >

,Tb\ /O N /Tn\,’s

Ty~ ATp< "

Harry Nyquist, “Certain topics in telegraph transmission theory”, Trans. AIEE, Apr. 1928



Pulse Shaping: sinc Pulse

» Let fy = 1/T}p. The sinc pulse sinc(mw fyt) satisfies Nyquist's first crierion
for zero ISI:

1 t=0

sinc(m fpt) =
0 t=+kT), k=+1,+2,...

» This pulse is bandlimited. Its Fourier transform is

_1nt
P(f) = fbH<fb)
p(t) 1 P(f) 1y
: [T ]
R _ATh 0 ™_7T, —f/2 /2 f

» Unfortunately, this pulse has infinite width and decays slowly.



Nyquist Pulse

Nyquist increased the width of the spectrum in order to make the pulse fall
off more rapidly.

The Nyquist pulse has spectrum width %(1 +7)fp, where 0 < r < 1.

S0+

P(f) —

- ~
e N
4 AN

’ \ :
. « f
S

_fb —f/2 0 f/2 f

We want to choose P(f), and hence p(t), so that
» p(t) =0 for t = nT}, so there is no intersymbol interference.
» p(t)=1fort=0

So that it basically functions like a sinc. Can we do this?



If we sample the pulse p(t) at rate f, = 1/Ty, then
p(t) = p(t) Mg, (t) = p(t)é(t) = 6(t).

since p(t) is zero at multiples of T}, except at zero where it is 1.
The Fourier transform of the sampled signal is

o0

P(f)= Y P(f—kfy) =1

k=—o00

The first term is the Fourier transform of the sampled signal p(t) Ill7, (¢),
which equals the Fourier transform of d(¢), which is 1.

This is an interesting result!



Nyquist Pulse (cont.)

Since we are sampling below the Nyquist rate (1 + r) f3, the shifted
transforms overlap.

Nyquist's criterion require the spectrum overlaps add to 1 for all f.

/ijp@—lkfb) A Ip<t>
—2fp —fo =f/2 0 fi/2  fe 2fp

The result is the same as if we had used a sinc for p(t), and summed them
up. From the sampling perspective these do the same thing.

For parameter r with 0 < r < 1, the resulting pulse has bandwidth

B, =1(fo+1f)

The parameter r is called roll-off factor



Nyquist Pulse (cont.)

There are many pulse spectra satisfying this condition. e.g., trapezoid:

1 fl <50 =7)fp
P(f) = 1= =708 50— n)fy <IfI < 50+
0 F1> 3=

A trapezoid is the difference of two triangles. Thus the pulse with
trapezoidal Fourier transform is the difference of two sinc? pulses.

. -1
Example: for r = 3,

so the pulse is
p(t) = 7 sinc®(3 fyt) — g sinc? (3 fyt)

This pulse falls off as 1/t2,



Nyquist Pulse (cont.)
Nyquist chose a pulse with a “vestigial” raised cosine transform.

This transform is smoother than a trapezoid, so the pulse decays more
rapidly.

The Nyquist pulse is parametrized by r. Let f, = rf;/2.

A

— 2f, —

o
i



Nyquist Pulse (cont.)

Nyquist pulse spectrum is raised cosine pulse with flat porch.

1 ) fl<ifo—fa

[ =35/
P(f)= %(1—811171’( 2f2 b)) ‘fl_%fb‘<fm
0 fl>3fo+ fa

The transform P(f) is differentiable, so the pulse decays as 1/2.

|P(NI

=<
SN
\\\

R 3Ry4 Ry f—

This shows r = 0, a sinc, » = 1/2, and r = 1, a raised cosine, which is a
well known window function. The sidelobes of p(t) decrease rapidly with 7.



Controlled ISI (Partial Response Signaling)

The second Nyquist approach embraced ISI. The interference is known if we
know the adjacent bits! This allows us to achieve a lower bandwidth by
using an even wider pulse. The ISI can be canceled using knowledge of the

pulse shape.
pl1)

’
K
/

V

b oP R d e W i -

......... 7 5 -

3T _27-])\_/_7-,, ______ 1o T a7, 3Ty 4T,

In this case p(t) is equal to 1 for t = 0 and t = T,

The signal at time T}, is then depends on both x(0) and x(7}).
» If both are 1, then the output y(t) = 2

» if one is 1, and the other is -1, the output is 0
» if both are -1, the output is -2.

Given a starting value for aj, where z(t) = >, ayd(t — kT}) we can
subtract off the ISI term by term, and recover the bit sequence {ay}



Partial Response Signaling (cont.)
The ideal duobinary pulse is the sum two shifted sinc’s

p(t) = sin(mfpt)  sin(wfp(t — Tp)) __ sinmfit
T fot mfo(t—=Tp)t  wfet(l— fit)

This makes sense, it will be 1 at 0 and 7} and zero elsewhere.
The Fourier transform of p(t) is

P(f) = zcos (j{) <JJ;> —jmf/fo

The spectrum is confined to the theoretical minimum of f,/2.

T —h2 0 fo/2 1Y



Zero-ISI, Duobinary, Modified Duobinary Pulses

Suppose p,(t) satisfies Nyquist's first criterion (zero ISI).
Pa(t)

AN /,
— M _AT} 0 N1 ¢

Then
pb(t) = pa(t) + pa(t - Tb)

is a duobinary pulse with controlled ISI.

po(t) = pa(t) + palt — Tp)




By shift theorem,
Py(f) = Pa(f)(1 +e772707)

Since Py(fp/2) = 0, most (or all) of the pulse energy is below f/2.

We can eliminate unwanted DC component using modified duobinary,
where p.(=Tp) = 1, pc(Ty) = —1, and p.(nTp) = 0 for other integers n.

Pe(t) = pa(t +Tb) — pa(t —Tp) = P.(f) = 2jP,(f)sin 27Ty f

The transform of p.(t) has nulls at 0 and +f;/2.

pe(t) = pa(t +Tp) — pa(t — To)




Zero-ISl, Duobinary, Modified Duobinary Pulses (cont.)

Zero-ISI




Zero-ISl, Duobinary, Modified Duobinary Pulses (cont.)

150

100 hl

50 q

200
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100 hl

50 q

200

150 4

100 - 4

50 bl




Partial Response Signaling Detection

» Suppose that sequence 0010110 is transmitted (first bit is startup digit).

Digit 0 01 o1 1 o0
Bipolar amplitude -1 .11 -1 11 -1
Combined amplitude 2 0 0 0 2 O
Decode sequence 01 01 1 O

P Partial response signaling is susceptible to error propagation.

» If a nonzero value is misdetected, zeros will be misdetected until the
next nonzero value.

» Note that the signal now has multiple levels (-2, 0, 2). We could also do
that directly, as we will see next week.

» The need for partial response detection can be eliminated by differential
encoding (from two classes ago), where the input stream is preprocessed.
Then a receiver can directly read out the data bits.



Next Time

» Friday : APRS FSK Lab
» Monday : Eye Diagrams, M-ary encoding, digital carrier systems
» Wednesday : Error Correction, Parity, CRC codes

» Friday : Final project discussion



