Lecture 7: More AM Modulation Methods

John M Pauly

October 10, 2021

More AM Modulation Methods

- Vestigial sideband modulation (VSB)
 - VSB spectrum
 - Modulator and demodulator
 - ► NTSC TV signsals
- Quadrature modulation
 - Spectral efficiency
 - Modulator and demodulator

SSB Modulation

SSB Demodulation

To decode the SSB signal, we just reverse the operations

Vestigial Sideband Modulation (VSB)

▶ SSB relies on being able to filter out one sideband. For audio this is possible because the voice spectrum drops off below 300 Hz, allowing space for a transition band

This is not possible for other signals, like video, that have strong components at low frequencies.

VSB Idea

The solution is *Vestigial Sideband Modulation*, *VSB* where a small portion (a vestige) of the unneeded sideband. This reduces DC distortion.

- ► VSB signals are generated using standard AM or DSB-SC modulation, then passing modulated signal through a sideband shaping filter.
- ▶ The signal can be designed so that demodulation uses either standard AM or DSB-SC demodulation, depending on whether a carrier tone is transmitted.
- ▶ VSB modulation with envelope detection are used to modulate image in analog TV signals. (The audio signal is modulated using FM.)

VSB Modulator

The transmitted signal has spectrum

$$\Phi_{\text{VSB}}(f) = (M(f + f_c) + M(f - f_c))H_i(f)$$

where $H_i(f)$ is the *shaping filter* for the VSB modulator.

VSB System

We transmit the VSB signal $\phi_{VSB}(t)$,

How do we choose the receiver filter $H_o(f)$ so that we get the original message back?

VSB Receiver

▶ The intermediate signal after the demodulator is

$$e(t) = \phi_{\text{VSB}}(t) \cdot 2\cos\omega_c t$$

has spectrum

$$\Phi_{\text{VSB}}(f + f_c) + \Phi_{\text{VSB}}(f - f_c)$$

- ► This has two copies of the signal that are shifted to baseband, but unfortunately they overlap!
- ▶ This is then filtered by $H_o(f)$.

This looks like:

The filter $H_o(f)$ needs to compensate for the fact that the two sidebands overlap when demodulated to baseband.

VSB Receive Filter

We can recover m(t) by using a filter $H_o(f)$ defined by

$$H_o(f) = \frac{1}{H_i(f + f_c) + H_i(f - f_c)}, \quad |f| \le B$$

Note that the division is only done over the signal bandwidth! How could we design $H_i(f)$ to make our lives easier?

VSB Encoding and Decoding

- ► There are lots of other ways to encode and decode VSB, especially if we are using SDR's.
- You'll see one in the next homework that uses complex modulation, a different filter, and a neat Fourier transform symmetry trick.
- VSB signals turn up in many different places
- The analog TV system NTSC used VSB to save bandwidth
- VSB is widely used in Magnetic Resonance Imaging (MRI) to reduce the amount of data you need to collect

Quadrature Amplitude Modulation (QAM)

- \blacktriangleright DSB-SC modulates a signal with bandwidth B to a transmitted signal with bandwidth 2B
- \triangleright SSB reduces the transmitted bandwidth to B, but
 - requires more complex modulator
 - reduces SNR (for a fixed carrier amplitude)
- \blacktriangleright Quadrature amplitude modulation uses the 2B transmitter bandwidth to send two independent (real) signals:

$$m_{QAM,c}(t) = m_1(t)\cos(2\pi f_c t) + m_2(t)\sin(2\pi f_c t)$$

- QAM has the same spectral efficiency as SSB but does not need sharp band-pass filters
- ▶ QAM is used in almost all digital communication methods, including telephone modems, cable TV, satellite TV

QAM Modulator and Demodulator

Two real messages, $m_1(t)$ and $m_2(t)$. m_1 is modulated on a cosine, and $m_2(t)$ is modulated on a sine.

Note that we need a synchronous receiver, or the two channels will interfere. What happens with a 90° phase shift?

If the input spectra look like

Then the transmitted spectrum looks like

Then demodulating with a cosine will give me $M_1(t)$ at baseband, and demodulating with a sine will give me $M_2(t)$.

QAM

- One way to think about this system is that we send $m_1(t)$ on the real, or in phase channel (modulate and demodulate with $\cos(2\pi f_c t)$)
- ► The second message $m_2(t)$ is sent on the imaginary, or quadrature channel (modulate and demodulate with $\sin(2\pi f_c t)$)
- ► There are generalizations that use many phases and amplitudes to send lots of digital bits at once.
- This is widely used for cable TV, such as QAM-64. We'll see this later in the course.

AM Modulation

- ▶ Many different ways to encode information as amplitude
 - ► AM
 - DSB-SC AM
 - ► SSB
 - VSB
 - QAM
- Common issues
 - Synchronization
 - Bandwidth
- ► Next: Encoding information in frequency