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More forthcoming Workshops

• 6-8 January 1999, a three-day introductory
workshop to multilevel modelling using MLwiN
will take place in the Institute of Education,
University of London. Enquiries to Anne-Lise
McDonald at Health Policy and Practice Unit,
UEA, Norwich, NR4 7TJ. Tel: +44 (0)1603
514867, email: a.cox@uea.ac.uk.

• 25-26 March 1999, a two-day introductory
workshop to multilevel modelling using MLwiN
is taking place in the Institute of Education,
University of London. Enquiries to Min Yang at
Mathematical Sciences, Institute of Education,
20 Bedford Way, London WC1H 0AL. Tel: +44
(0)171 612 6682, email: m.yang@ioe.ac.uk.

New project in applying multilevel
analysis for A-level grades:

The Multilevel Models Project in London has
been funded by the Economic and Social
Research Council (ESRC) in the UK for an
analysing of A-level exam grades. This study will
look into some practical issues of applying
multilevel multivariate models as well as ordered
categorical data models.

Call for paper proposals

A package of research papers on the application
of multilevel modeling (random effects,
hierarchical models) to psychological data is to
be put together for a special issue of Multivariate
Behavioral Research and will be refereed. The
goal of the special issue is to introduce MLM,
and the special advantages, strengths, and

problems involved, to a quantitatively
sophisticated audience of psychologists. There is
interest in: 1) illustrative papers that apply MLM
to address interesting substantive psychological
research questions with either longitudinal or
cross-sectional data analysis, 2) papers dealing
with quantitative issues pertaining to the
application of MLM. For example, research
reports dealing with power issues, violations of
assumptions, computation of effect sizes, or
identification of outliers, would be most
welcome.

If you have a paper idea for the special issue,
please send a 2-page proposal outlining your
ideas to Steve Reise (reise@psych.ucla.edu or
tel:310 794 1594). The deadline for proposals is
Feb 1, 1999.
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Multilevel Modeling in Windows; a review of MLwiN
(Version 1.01.0001 of May 1998)

Joop Hox, University of Amsterdam, The Netherlands

There are two strategies to move a DOS
program, such as MLn, to Windows. The first is
to keep the program more or less as it is, and to
tack on an interface with dialog boxes and
buttons to replace the command-driven
interface. This is useful, because reading
questions and clicking on buttons are much
easier than trying to remember commands which
then must be typed in without errors. The
second strategy is to really use the graphical and
multitasking abilities of Windows to enhance the
capabilities of the program and to give the user
more control. The new Windows version of
MLn, called MLwiN, is clearly trying to
accomplish the latter. The old MLn is still there,
and the old commands can still be used, but
MLwiN has many new features, some of which
use the Windows interface to do things that are
difficult to program under DOS.

When MLwiN starts, we get an almost empty
screen, with a menu bar, and a tool bar. To start
working, we must load a raw data file or a
worksheet (MLwiN can import and export MLn
worksheets), and open one of the windows.

As a user, when you upgrade a program to a
radically changed version, there is a natural
inclination to keep the old version around, just
to make sure that you have something familiar
that you know how to work with. In MLwiN, the
old version is actually available by opening the
Command interface window and its associated
output window. The old MLn commands can
then be typed in, and the familiar output appears
in the Output window. Only the command HELP

does not work, in fact I managed to crash
MLwiN by doing just this (1).

                                               
(1) Editor’s note: this has been fixed in version 1.02
(June 1998).



The central command centre to specify models
is the Equations window. Here, the graphical
capacities of Windows are used to build up the
equation for the model. If we load the example
worksheet Oxboys.ws2, and open the equations
window, we get the equations for the current
model. Clicking on the Names button then
produces the equations with variable names
instead of X’s and Y’s.

We now have an algebraic representation of our
model. The brief notation ~N(XB, Ω) informs us
that we assume a normal distribution for the
residual errors. By clicking on the N, we can
change this, for example into a binomial error
structure. Other options are to put estimates and
standard errors in place of the beta’s and
sigma’s.

The equation window makes clear what I mean
with ’really using the Windows interface.’ We
can click on various parameters to open a dialog
box, to specify if it is in the random part at one
of the levels. When the specifications of a
parameter are changed, for instance by putting it
in the random part at level two, this is
immediately reflected in changes in the
equations. During the iteration process, we can
view the current estimates. Other windows show
the estimates in a table, and show the
Trajectories, that is, a graph of the successive
estimates in the iteration process. If the
iterations are still running, the trajectories are
continually being updated, so we can monitor
the iteration process. This is very useful to
diagnose convergence problems. The Residuals
window is used to specify the calculation of
residuals, which can then be used in the Graph
window to construct a variety of plots. Of
course, the equations, tables and graphs can be
copied to another program via the Windows
clipboard.

There are some new features in MLwiN. The
most remarkable are two new estimation
methods: bootstrapping and MCMC. MLn
already had facilities for bootstrapping. In
MLwiN, bootstrapping is built into the Windows
interface, which makes it easy to use. The
method is a parametric bootstrap, which means
that the program computes bootstrap samples
by adding randomly chosen residuals from the

appropriate error distributions. This is used to
correct estimates for bias, and to construct
standard errors and confidence intervals if there
are reasons to distrust the asymptotic standard
errors, for instance with small samples.

Markov Chain Monte Carlo (MCMC)
estimation methods are quite different. To begin
with, they are Bayesian, which means that we
have to provide a prior distribution for the
parameters we want to estimate. By default,
MLwiN uses a very flat normal distribution for
the regression coefficients, and a uniform
distribution between 0 and a very large number
for the (co)variances. Bayesian statistics
combine the prior distribution and the data into
a posterior distribution for the parameters. If the
posterior distribution is simple, we can calculate
its mean or mode, and establish confidence
intervals. Often, the posterior distributions are
extremely complex. MCMC methods are
procedures to sample parameter values from the
posterior distribution. Given enough
independent samples from the posterior
distribution, we can calculate the mean, mode,
and confidence intervals on this sample. MLwiN
has two MCMC procedures: Gibbs sampling
and Metropolis-Hastings. MCMC methods
typically have two stages: a burn-in stage and a
monitoring or sampling stage. In the burn-in
stage, the MCMC computations are run for a
large number of iterations, to allow it to
converge on the correct posterior distribution.
Next, a large number of iterations following that
are collected, to be used for estimating
parameter values and standard errors. There are
two problems here. The first is to ensure that we
have enough iterations in the burn-in to
converge on the correct posterior distribution.
The second is to collect enough independent
samples from the posterior distribution to permit
good estimates. The key word here is
independent. The successive draws produced by
the MCMC method are correlated, sometimes
highly correlated. Thus, we must find out how
high these correlations are. Then, we draw
either only at every tenth or at every hundredth
MCMC iteration, or we simply draw a very
large number of MCMC samples, much more
than would be required if they were independent.



MLwiN provides some useful diagnostics to
inspect the MCMC results, such as parameter
plots at the successive iterations and
autocorrelations. The example shows the
MCMC diagnostics window overlaid on the
trajectories window. In the trajectories window,
we see the successive values of the parameters.
What we like to see there, is a plot with no
structure. By clicking on a specific plot, we get
the MCMC diagnostics, that help us to decide
whether we

have enough MCMC iterations for the burn-in
and the monitoring process.

The MCMC diagnostics shown are for the
intercept parameter in the Oxboys example. The
autocorrelations, shown in the ACF box, are
large in this example; the correlation between
draws that are separated by 100 iterations is
still appreciable. The number NHAT=85960 is
the number of MCMC iterations required for
precise estimation of the confidence intervals.
This is clearly a case where we should use a
very large number of iterations, and possibly
monitor only every hundredth or so. A nice
feature of MLwiN is that it makes it easy to
switch between different estimation methods.
We could do a sensitivity analysis by using

several different methods and comparing the
results. If the results vary strongly across
different estimation methods, we should
probably not trust any of them. It could be that
our data do not contain much information on the
parameter that we try to estimate, and we must
either modify the model or collect more data.

Conclusion

In general, I like MLwiN a lot. The program is
not a simple port of the DOS version to
Windows. It has a many new features, both
statistical and in the user interface, and some

old features are now much easier to use with the
new interface. It is the first Windows version of
a complex program; it looks well, and is pretty
stable. In the course of preparing this review, I
have tried it on a variety of data files, and used
most of the available features. In doing this, I
have managed to crash the system once, which
could easily be caused by one of the other three
programs that were concurrently running.
MLwiN provides users with new bootstrap and
MCMC estimation methods simply by hitting a
button; these certainly are powerful capabilities.
With reasonably-sized data sets (two level
problems with about 1000 individuals), the



computer-intensive bootstrapping and MCMC
methods ran fast enough on a Pentium 233
system. A few features are still only available
through the Command window, and sometimes
clicking on an object produces a ’feature not yet
implemented’ message. However, the makers of
MLwiN aim to put such features into Windows
point-and-click interfaces eventually. Program
upgrades and macro’s can be downloaded from
the MLwiN website.
(http://www.ioe.ac.uk/mlwin/)

I have some minor grumblings too. The
documentation is, just like earlier versions,
rather terse. There is a good tutorial, which runs

new users through a number of examples. This
is nice,

 but it also makes it difficult to find specific
information. MLwiN has a good Help system,
which is expanded regularly and upgraded via
the website, but not everybody likes to look up
everything online. For instance, all information
on constructing macro’s is in the Help system. In
going through that section, I get the impression
that it is now possible to use macros as a plug-
in to the program, so they feel like an extension
of the program. That is neat. However, it is not
very clear how to accomplish this. I would like
to have had more examples.

Fitting multilevel models using SAS PROC MIXED
Judith D. Singer

Harvard University, Graduate School of Education, USA

SAS PROC MIXED is a flexible program
suitable for fitting many types of multilevel
models. Although the documentation is complex
and the “defaults” are rarely the ones multilevel
modelers desire, the ability to do data reduction,
management, and analysis in a single software
package already familiar to many researchers
makes this approach particularly attractive.

In a forthcoming paper in the Journal of
Educational and Behavioral Statistics, I provide
a step-by-step tutorial for using PROC MIXED
to fit three common types of multilevel models:
(1) two-level “school effects” models, for data on
individuals nested within hierarchies; (2) two-
level “individual growth” models, for exploring
longitudinal data over time; and, (3) three-level
models, which combine these two features. The
full text of the paper can be downloaded from
http://hugse1.harvard.edu/~faculty/singer.
Here, I introduce the basic logic underlying the
PROC MIXED syntax, present illustrative
output, and briefly describe some of the models
that can be fit.

Basic Syntax

The logic behind PROC MIXED syntax can be
understood by considering an unconditional
means model for a classic two-level “ school

effects”  data set.  Suppose you have data at two
levels of a hierarchy–say, students within
schools--and you would like to examine the
behavior of a level-1 outcome, Y

ij
.  Analysis

usually begins with an unconditional means
model with no predictors, which expresses Y

ij
 as

the sum of a level-2 “ intercept”  (
0 jβ ) and a

level-1 random error (r
ij
) associated with the ith

student in the jth school. At level-2, we express
the school-level intercepts as the sum of an
overall mean (

00γ ) and a series of random

deviations from that mean (u
oj
). We further

assume that r
ij
 ~ N(0, 2σ ) and u

oj
 ~ N(0, 

00τ ).

This yields:

ij j ij

j j

Y r

u

= +

= +
0

0 00 0

β
β γ

which can be rewritten as:

ij j ijY u r= + +00 0γ (1)

The combined specification in (1) is most
helpful for specifying a model in PROC
MIXED. As highlighted by the brackets, the
model is composed of two parts: a fixed part,
which contains the single term 

00γ  (for the

intercept) and a random part, which contains two
terms (for the intercept u

0j
 and for the within-



school residual r
ij
). PROC MIXED syntax

reflects this partition:

     proc mixed;
       class school;
       model y = /solution;
       random intercept/sub=school;

After invoking the procedure (using the PROC
statement) and identifying categorical variables
(using the CLASS statement), the MODEL
statement specifies the fixed effects and the
RANDOM statement specifies the random
effects. This MODEL statement may appear odd
because it seems as if it has no predictors. In
reality, it has one implied predictor, the vector 1,
the intercept, included by default. (The intercept
can be suppressed by adding the option /NOINT
to the MODEL statement.) The /SOLUTION
option asks SAS to print estimates for fixed
effects.

The RANDOM statement is crucial and its
specification is usually the trickiest part about
using PROC MIXED. Like most regression
programs, the procedure assumes one random
effect for the lowest-level (here, within-school)
residual, rij. By specifying the INTERCEPT on
the RANDOM statement, we indicate the
presence of a second random effect–that the
implied INTERCEPT should be treated not only
as a fixed effect (

00γ )
 
but also as a random

effect (
00τ ). The SUB= option on the RANDOM

statement specifies the multilevel structure,
indicating how level-1 units are divided into
level-2 units. Here, the subgroups are designated
by the classification variable SCHOOL. Without
this RANDOM statement, the model fit would be

ij ijY r= +00γ .

Figure 1 presents the results of fitting this model
to the High School and Beyond math
achievement data included with HLM (Bryk,
Raudenbush, & Congdon, 1996). Equivalent
results are presented on pages 62-66 of Bryk and
Raudenbush (1992). The output is comprised of
four sections. The Iteration History section
provides convergence information. Because the
program is efficient, convergence is often quick,
as it is here. With more complex models or
grossly imbalanced data sets, convergence slows.
The Covariance Parameter section provides
estimates and hypothesis tests for random

effects. The Model Fitting section provides
information useful for comparing the goodness of
fit of multiple models with the same fixed effects
but different random effects. The two criteria
likely to be the most helpful are Akaike’s
Information Criterion and Schwarz’s Bayesian
Criterion. The final section presents parameter
estimates and hypothesis tests for fixed effects.

Including level-1 and level-2 predictors

Once you understand the basic syntax, it’s easy
to include level-1 and level-2 predictors.
Additional fixed effects are specified on the
MODEL statement; additional random effects
are specified on the RANDOM statement.
Interactions between predictors (at the same level
or at different levels) are specified using
VAR1*VAR2 syntax. Categorical predictors can
be specified using either user-defined dummy
variables or by adding them to the CLASS
statement.

Many researchers want to “center” predictors at
either the grand-mean or the context mean.
Unlike some multilevel programs that allow the
user to center when specifying a model, users of
PROC MIXED must center in a previous DATA
step. (PROC SUMMARY, which computes
grand means and context means, makes this easy
to do.) Given the misconceptions surrounding
centering and its consequences, some might
argue that this deliberate approach is preferable
to the automatic approach available in other
programs.

To illustrate, consider two predictors:
MEANSES, the school mean SES and CSES,
the difference between each student’s SES and
the school mean. We fit an “intercepts and slopes
as outcomes” model as follows:

proc mixed;
     class school;
     model y = cses meanses

cses*meanses/solution;
     random intercept cses/
            sub=school type=un;



Notice the similarity between this syntax and
that for the unconditional means model. Three
fixed effects are added to the MODEL
statement–one for each predictor and a third for
the cross-level interaction. A single random
effect, CSES, is added to the RANDOM
statement to indicate that student CSES slopes
are allowed to vary across schools. The
TYPE=UN indicates that the variance-
covariance matrix for the random effects is
completely general, telling SAS to estimate a
variance component for the INTERCEPTs and
for the CSES slopes as well as the covariance
between them.

Individual growth models

Individual growth models can be fit by using a
RANDOM statement, which mimics a school-
effects analysis or by using a REPEATED
statement, which mimics repeated measures
analysis of variance. Either way, you must first
create a person-period data set in which each
individual has one record for every time-period
that he or she is observed. I present SAS code for
the conversion in Singer (in press).

Consider the basic individual growth model:
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The model in (2), which can be rewritten as:

ij ij

j j j ij ij

Y TIME

u u TIME r

= +

+ +
00 10

0 1 1

[ ]

[ ]

γ γ

π
(4)

can be fit using the following code:

   proc mixed;
     class person;
     model y = time/solution;
     random intercept time/
            subject=person type=un;

Notice the similarity to the syntax for the
school-effects analysis. The CLASS variable
changes from SCHOOL to PERSON to indicate
that the data represent multiple observations
over time for individuals. By using this CLASS
variable on the RANDOM statement (with the
SUBJECT=option) we allow both intercepts and
slopes to vary across people.

This model places a common, but often
unrealistic, assumption on the behavior of the rij,
the within-person residuals over time. In fitting a
model in which only the intercepts vary across
persons, we assume a compound symmetric error
covariance matrix for each person.  In fitting a
model in which the slopes vary as well, we
introduce heteroscedasticity into this matrix. One
of the appeals of PROC MIXED is that it allows

 Figure 1: Results of fitting an unconditional school effects model
                       REML Estimation Iteration History

                Iteration  Evaluations     Objective     Criterion

                        0            1  34899.608417
                        1            2  33913.503461    0.00000109
                        2            1  33913.484655    0.00000000

 Convergence criteria met.

                      Covariance Parameter Estimates (REML)

     Cov Parm          Ratio      Estimate     Std Error       Z     Pr > |Z|

     INTERCEPT      0.21992178    8.60965741    1.07782320    7.99    0.0001
     Residual       1.00000000   39.14872611    0.66065147   59.26    0.0001

                      Model Fitting Information for MATHACH

                     Description                        Value

                     Observations                    7185.000
                     REML Log Likelihood             -23558.4
                     Akaike’s Information Criterion  -23560.4
                     Schwarz’s Bayesian Criterion    -23567.3
                     -2 REML Log Likelihood          47116.79



the user to compare different structures for the
error covariance matrix. Instead of the individual
growth model in (2)-(4), consider the following
alternative:

ij j j ij ij

j j

ij

Y TIME r

r N

= + +

= =
0 1

0 00 1 10

0

π π
π γ π γ

( )

,

~ ( , )Σ
(5)

Here, the intercepts and growth rates are
assumed to be constant across people. But the
model introduces a different type of complexity:
the residual observations within persons (after
controlling for the linear effect of TIME) are
correlated through the within-person error
variance-covariance matrix Σ . By specifying
alternative structures for Σ  (that ideally derive
from theory) the user can compare the goodness
of fit of different models. SAS has dozens of
alternative error-covariance structures built in. If
there are only three waves of data, it is worth
exploring only a few of these because there is so
little data for each person. With additional
observations per person, exploring these
alternatives for Σ  (called R in PROC MIXED)
can be profitable. Consult pages 311-313 of the
PROC MIXED documentation, pages 92-102 of
The SAS System for Mixed Models, and Wolfinger
(1996).

Three-level models and other extensions

PROC MIXED can be used to fit three- and
higher-level models. In the case of “school-
effects” analyses, you can include additional
RANDOM statements, with appropriate nesting
specifications given in the SUB= option. For
example, if you have data on students within
teachers within schools, you can fit an
unconditional means model with the syntax:

   proc mixed;
     class teacher school;
     model y = /solution;
     random intercept/sub=school;
     random intercept/
            sub=teacher(school);

In the case of longitudinal analyses that track
individuals nested within groups, the school-
effects specification can be added to the
individual growth model specification.

Other options are available to users interested in
more complex mixed models. Heterogeneity in
the error variance-covariance matrix can be
introduced using a /GROUP option on the
RANDOM statement.  Sampling-based Bayesian
analysis can be conducted using a PRIOR
statement that permits a variety of distributional
specifications for the variance components
parameters’ prior density.  SAS also provides
two macros--GLMMIX and NLINMIX--that can
be used for fitting generalized linear mixed
models and nonlinear mixed models that do not
involve the normal continuous outcomes treated
here.

Because of its flexibility, it takes practice to use
PROC MIXED.  In addition, because it was not
written with multilevel models in mind, the
procedure’s defaults must usually be overridden.
The investment in time can yield a high payoff,
however, as once the basic syntax is understood,
many diverse types of models can be fit. Users
wanting to learn more should consult the SAS
documentation for PROC MIXED (SAS
Institute, 1996), The SAS System for Mixed Models
(Littell et al., 1996), and Singer (forthcoming).
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Review of ’Statistics in Education’ (Ian Plewis. London: Arnold,
1997)

Juan C. Oliver,  Rodriguez Universidad Jaime I, Castellon, Spain

The purpose of the book is to review recent
developments in methods for the statistical
analysis of educational data that can also be of
interest to social scientists in general. It is
addressed to a reader with some introductory
background in statistics, graduate students and
researchers. The book focuses specially on
identifying different types of statistical models
that are useful in frequent kinds of educational
questions and research designs.  The first half is
devoted to continuous responses, while the
second half covers categorical data.  The
emphasis is on substantive aspects of model
interpretation and usage, rather than on details of
statistical inference or computation.  Abundant
references are given on these issues for the
interested reader.

The multiple regression model and its
assumptions are reviewed in chapter two;
examples include situations with categorical and
continuous predictors, transformed response
variables, residual plots, and some of the
problems with missing data.  Discussion of the
ecological fallacy (Freedman et. al, 1991) serves
as a link to multilevel models, in a case where
different regression lines and processes are
observed within and between classrooms for
mathematics attainment as a function of
curriculum coverage.

Use of realistic models of the hierarchical nature
of educational data (pupils within classrooms
within schools within local education authorities
within governments) is dealt with in chapter
three. Two and three level models with random
intercepts and slopes are introduced that allow
one to quantify the amount of variability in pupil
attainment and progress (level one) that is
accounted for by differences in higher level units,

such as classrooms (level two) or schools (level
three). A series of graphs and residuals plots
illustrate these ideas graphically, as well as
providing diagnostics of model fit. The
identification of explanatory variables that may
reduce the magnitude of the random effects
observed at higher levels is then discussed as a
second step in model building; e.g., differences in
school funding (level three), teacher styles (level
two) or pupil sex (level one) are variables that
could explain the above components of the
variance in pupil attainment. The importance of
taking into consideration for the hierarchical
nature of data to avoid biases and improve
efficiency in the design and analysis of
intervention studies is discussed. A brief
overview of software for multilevel modelling is
also given.

Chapter four addresses another type of
hierarchical structure often found in educational
research: repeated measurements nested within
pupils. The advantage of using multilevel
modelling in this situation versus a more
traditional approach is reviewed. Most of the
chapter is devoted to an analysis of a set of
longitudinal measures of reading attainment,
which is used to show how to specify, estimate
and interpret some basic two and three level
growth curve models. The development of
reading is shown to be a nonlinear function of
age, with significant components of variation at
levels two (pupils) and three (schools). Sex and
ethnic groups are described as useful explanatory
variables at level two. The possibilities of
modelling and testing heteroskedasticity of
residuals at level one (reading level at different
measurement occasions) is also briefly
introduced.  Some of the problems and types of
missing data are discussed, along with useful



diagnostic techniques.  Finally, a word of caution
is given on the dependence of certain statistical
results on the type of measurement scale used;
potential interpretation problems and the strength
of the conditional regression model in this respect
are reviewed.

Chapters five, six and seven deal with
categorical data, reviewing the analysis of
contingency tables for dichotomous or
polytomous responses, ordered and unordered,
logistic regression and log-linear models.
Methods for dependent measurements in the
analysis of change and agreement are introduced
as extensions of the above techniques and they
are also distinguished from general association
statistics.

Chapter seven is devoted to modelling the
probability of discrete educational events in a
given time period during the life history of
individuals. Occurrences of preschool events
(such as nursery or playgroups) and their
transitions to and from home are analyzed as a
function of explanatory variables such as
mother´s educational level or child´s gender. Use
of this approach has not been very common up to
now; the field is however expanding with the
increasing availability of longitudinal data sets.
Some elements of multilevel event-history
analysis are outlined.

Chapter eight addresses the way in which
measurement error can affect model estimates,
an important topic that is seldom considered in
the practice of educational statistics. Some of the
problems encountered with both continuous and
categorical data are discussed, along with
general correction strategies. Finally, several
extensions of multilevel modelling of practical
use in education are reviewed: a) Cross classified
situations, which occur when a child belongs to
more than one higher level unit, such as two
different schools; b) Multivariate models, where
more than one performance variable is measured
and it may be of interest to distinguish within
unit (classroom, as an example) from between
unit correlation; c) categorical data, whose
analysis can result in biased error terms and
misleading goodness of fit statistics if the
multilevel structure of the data is not observed.
Population averaged, and subject specific

methods are presented here as two useful general
approaches to estimate fixed and random effects
in this situation.

The examples data sets discussed in the book are
included in a diskette. Several exercises are given
at the end of each chapter, along with questions
on interpretation of MLn output and some
sample code in GLIM and SAS. Answers to
some of them are provided at the end of the book.
Since the solution of these exercises involves
some model fitting, I think interested readers
would benefit from an appendix that included
basic inference and the notion of deviance in
generalized linear models. From the viewpoint of
a novice trying to learn multilevel concepts, it
would also be good in my opinion to make more
explicit links to other standard statistical terms
that may be more familiar to the reader. One of
them is the notion of nested or hierarchical
models (Kirk, 1995; Myers & Well, 1995).
Milliken and Johnson (1994) distinguish between
nesting in the treatment structure and nesting in
the design structure in an experimental setting. In
a standard analysis of variance, there is a
different error term for each level of
experimental units in the design structure, but
that does not happen if the nesting occurs in the
treatment structure. It appears to me that
multilevel models address the first case, in which
there are different levels of experimental units. It
is possible to have a two-fold fixed effects nested
model, with no multilevel structure. In that case,
a standard nested ANOVA would apply. Even if
the multilevel framework allows for modelling
both situations, these would represent two
different types of hierarchical models. Other
links can be drawn by making its relationship
with the analysis of covariance more explicit
(Longford, 1993); and also with the
identification of simplifying conditions (if there
were any besides the intra-unit correlation being
equal to zero) under which other standard
methods could be used, as happens in the case of
some balanced mixed models. In my opinion,
such considerations are instructive exercises and
may help the reader to build on previous
knowledge and broaden his/her appreciation of
the general (or generalized) linear model.

Overall, Ian Plewis´s book is a well-documented,
very readable book that identifies a broad range



of methodological problems and solution
strategies for educational and social researchers.
It serves its purpose of reviewing recent
advances in the field well, and it is therefore
recommended to anybody that wants to update
his/her knowledge and analysis skills with newly
available statistical techniques. ()
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To obtain maximum likelihood estimates (MLE)
in multilevel analysis often requires the
evaluation of difficult integrals. In a two-level
setting, the model will have a hierarchical
structure such that the level-1 outcome, y, given
the random effects, b, has some distribution
L(y|b, θ ). At level 2, the random effects
themselves are assumed distributed according to
p(b|θ ) where θ  denotes a parameter vector.
The likelihood of observing y is then

L(y|θ ) = L yb p b db( | , ) ( | )∫ θ θ . (1)

Thus, the random effects, b, are "integrated out"
to yield the marginal density (or "likelihood") of
y given θ . Given y, the MLE is the value of θ
that maximizes this likelihood.

Evaluation of the integral in Equation 1 is
sometimes easy. For example, if both L(y|b, θ )
and p(b|θ ) are normal densities, the integral,
which will also be a normal density, can be
evaluated analytically. The likelihood is then
maximized by standard algorithms such as EM
(Dempster, Laird, and Rubin, 1977) or Fisher
scoring via iterative generalized least squares
(c.f. Goldstein, 1995). In fact, whenever the

distribution of b is conjugate to that of y,
integration can be comparatively simple.1

Conjugate pairs include not only the normal-
normal, but also the Poisson-gamma, binomial-
beta, and gamma-inverse gamma, for example.

Often, however, non-conjugate pairs are of great
interest. For example, in multilevel logistic
regression, the outcome yij for student i in
school j is Bernoulli, taking on a value of 1 with
probability µij, where

 log[ / ( )]ij ij ij ij
T

ij
T

jX Z bµ µ η β1− = = + .

A flexible model for the random effects bj is the
multivariate normal, bj ~N(0,D) where D is the
variance-covariance matrix of the random
effects. The integrand of Equation 1 is thus a
Bernoulli-normal product, where θ  includes the
elements of (β ,D). In this case, analytic

evaluation of Equation 1 is impossible. Other

                                               
1This assumes that a link function is carefully
chosen (McCullagh and Nelder, 1989; Lee and
Nelder, 1996).



interesting non-conjugate cases include the
Poisson-normal for count data and the
exponential-normal for duration-time data.

Researchers have proposed a number of
approximations to Equation 1 when analytic
evaluation is impossible. These include
approximate posterior modal estimation
(Stiratelli, Laird, and Ware, 1984; Wong and
Mason, 1985) and, closely related, marginal
quasi-likelihood or MQL (Goldstein, 1991;
Longford, 1993) and penalized quasi-likelihood
(Breslow and Clayton, 1993). These "first-
order" approaches work well when the diagonals
of D are small but produce non-trivial negative
asymptotic bias for large variances (Rodriguez
and Goldman,1995; Lin and Breslow, 1995). A
second-order correction greatly reduces the bias
(Goldstein and Rasbash, 1996).

Hedeker and Gibbons (1994; see also Gibbons
and Hedeker, 1997) proposed evaluation of
Equation 1 via Gauss-Hermite quadrature. The
beauty of this approach is that, by adding
quadrature points, the approximation becomes
as accurate as desired. The key difficulty is that
computations can be burdensome, especially for
very large data sets and multi-dimensional
random effects.

Based on the work of Raudenbush and Yang
(1998) and Yang (1998) we now consider an
alternative approach, which we shall call
"LaPlace6." Our experience to date indicates
that LaPlace 6 is computationally fast and
produces results equivalent to those based on
20-40

quadrature points, generally regarded as a large
number. The approach has three steps.

1. Expand the integrand of Equation 1 in an infinite Taylor series. Defining
f b L y b p b( ) ( | , ) ( | )= θ θ , and assuming f(b) and all its partial derivatives are continuous in a

neighborhood about b, we have

f b f b b b b
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2. Apply LaPlace’s method. Suppose f(b) has a maximum at b b= ~
. Then
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The proof appears in Raudenbush and Yang
(1998).

3. Maximize (3) with respect to θ  using
approximate Fisher scoring (Green, 1984),
which requires only first-order derivatives.

In practice, it is not possible to evaluate the
infinite series of Equation 3. Our experience
with a variety of data suggests that an
approximation

E E E Ek
k

T T T T[exp{ }] ( ) ( ) ( ) /
=

∞
∑ ≈ + + +

3
4 6 3

21 2 (4)

is adequate. In the two-level logistic case, we thus have
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where Zj contains rows ij
TZ , Wj is diagonal with

elements  µij (1-µij) and computational formulas

for T4j, T6j and 3
2

jT  are provided by

Raudenbush and Yang (1998). Making these
computations tractable is Yang's (1998)
compact representation of all moments of the
multivariate normal distribution.

We simulated 100 data sets and compared its
results ("Laplace6") with those from PQL and
Gaussian quadrature with 10 or 20 quadrature
points

("Gauss 10") and "Gauss 20"). The model
produced data with asymmetric probabilities
having an average conditional expectation equal
to 0.14.  The structure of the data sets follows
Rodriguez and Goldman (1995). These data sets
involve 16 hypothetical children nested within
each of 161 hypothetical communities, with
2576 children overall. The model reflects the
belief that the outcome yij depends on a child-
level covariate ("childcov") and a community-
level covariate ("commucov"), and that
intercepts and slopes varying across
"communities". Thus, we have a model for
person i in group j,

ij ij ij j ij j j ijcommu child childb bη µ µ β β β= − = + + + +log[ / ( )] ( cov) ( cov) ( cov)1 00 01 10 0 1

with b0j and 1 jb together forming a bivariate

normal distribution with means 0, variances D00,

D11 respectively, and covariance D01, where D00

= 1.625, D11 = 0.25, and D01 = 0.1.

Table 1  Averages of the Estimates for Simulated Data
   PQL Gauss-10 Gauss-20 Laplace6

D
00
 =1.625  1.2752  1.6532  1.6546  1.6352

D
01
 =.1    .0538    .1003    .0995    .0960

D
11
 =.25    .1614    .2575    .2562    .2667

00β  =-1.2 -1.0904 -1.1977 -1.2045 -1.2007

01β  =1    .9004  1.0081  1.0148  1.0029

10β  
 =1    .9114  0.9971    .9976    .9975

Table 2  Mean Squared Errors for Simulated Data
PQL Gauss-10 Gauss-20 Laplace6

D
00
 =1.625 .1522 .0737 .0633 .0563

D
01
 =.1 .0080 .0115 .0120 .0108

D
11
 =.25 .0113 .0073 .0072 .0075

00β  =-1.2 .0271 .0231 .0196 .0190

01β  
=1 .0236 .0193 .0175 .0164

10β  
=1 .0116 .0051 .0053 .0051

Tables 1 and 2 present averages and mean
squared errors of the estimates across 100
replications. As expected, PQL estimates are
negatively biased for all parameters. The
underestimation of the variance components
range from 22% to 46%, while that of the β ’s

are around 9%.  The other methods greatly

reduce the bias. Mean squared errors tend to be
a bit smaller under Laplace6 than under Gauss-
10 or Gauss-20 in these results.  In particular,
when Gauss-20 appears non-trivially better
than Gauss-10, Laplace replicates the
advantage or possibly improves upon it.



In summary, for bivariate random effects,
Laplace6 seemed to do as well as Gauss using
10 or 20 quadrature points. To assess
computational efficiency, we timed analyses on
6 randomly selected data sets using
Pentium233, and found the analysis took on
average 10 seconds per data set using Laplace6.
These analyses were found to take, on average,
3 minutes on Gauss-10 and 12 minutes on
Gauss-20.

We conclude that approximation of difficult
integrals via high-order, multivariate Laplace
approximation appears to be a promising
strategy for evaluating likelihoods in
hierarchical models. The approach can be
extended to the degree of accuracy required,
and can be written for multivariate integration
of arbitrary dimension. Of course, much more
research is needed: a) on the behavior of this
approach in binomial-normal models; b) in
other hierarchical generalized models; and c) in
a broader class of hierarchical models.
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Applications of Random Effects/Multilevel Models to Categorical
Data in Social Sciences and Medicine

A one-day conference with the above title was held at the Royal Statistical Society
headquarters on 20 October 1998. It was a joint venture between the Social and Medical
Statistics sections of the RSS, the ESRC programme on the Analysis of Large and Complex
Datasets (ALCD), and  Statistics in Society’ (JRSS(A)). Twelve papers were presented in four
sessions, and a range of disciplines was covered in each session. One of the aims of the
conference was to explore commonalities of application, problems and nomenclature across
disciplines as diverse as criminology, education, epidemiology and market research. Bayesian
and likelihood-based methods, clinical trials and observational studies were all represented. It
is hoped that a substantial proportion of the papers, along with commentaries from discussants
of each session and an introductory editorial will appear as a special issue of ’Statistics in
Society’ in 1999.

Abstracts of all the papers presented at the conference can be found at
http://www.ioe.ac.uk/ms/conf.html and full versions of some of them can be accessed from
this URL. (Ian Plewis, Institute of Education, University of London)

From October 1998, William Browne has joined the Multilevel Models Project
as a new member of the team after his PhD study in Bath University of UK.
His speciality is MCMC modelling. Bill has programmed the MCMC
procedures in MLwiN V1.0, and will be working on fitting a wider range of
models using the MCMC techniques. He can be contacted by email
w.browne@ioe.ac.uk or telephone +44 (0)171 612 6680.
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Please send us your new publications in multilevel modelling for
inclusion in this section in future issues.
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Editorial Questions
The Multilevel Models Project is considering ways of improving dissemination of multilevel
analysis, and the future of the newsletter. Your opinion on the following questions would be
greately appreciated. Please send your answers by email to the Editor (m.yang@ioe.ac.uk)
before Christmas.

Q1: What overall rating would you give to the M.M. Newsletter for its usefulness?
No used at all 1 2 3 4 5 6 7 8 9 Very useful

Q2: Ranking the following is order of usefulness.
Courses/Clinics Book review References Theoretical papers Applications Project news

Q3: In what form do you prefer to receive the newsletter?
1. Newsletter by post 2. Newsletter by email attachment 3. Web download

Q4: Would you consider submitting to the Newsletter?
Very dislikely 1 2 3 4 5 6 Very likely

Q5: How could the MM Newsletter be improved?
Please let us have your views.


