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Summary 
 
 
 
 

An important algorithmic area often used in practical tasks is that of algorithms on character 
strings. Many programming contests have used problems that could have been easily solved if one 
efficiently managed to determine if one string was a subsequence of another string, or had found an order 
relation within a string’s suffixes. We shall present a versatile structure that allows this along with other 
useful operations on a given string. 
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1    Introduction 
 
   
What are suffix arrays?  
 

In order to let the reader gain a better vista on suffix arrays, we shall make a short presentation of 
two data structures called trie, respectively suffix tree [1] – which is a special case of a trie. A trie is a tree 
meant to store strings. Each of its nodes will have a number of sons equal to the size of the alphabet used 
by the strings that are needed to be stored. In our case, with strings containing only small letters of the 
English alphabet, each node will have at most 26 sons. Every edge going from the father toward its sons is 
labeled with a different letter of the alphabet. The labels on a path starting from the root and ending in a 
leaf will form a string stored in that tree. As it can be easily seen, finding whether a string is contained in 
this data structure is very efficient and is done in O(M) time, where M is the string’s length. Therefore, the 
searching time does not depend on the number of words stored in the structure, this making it an ideal 
structure for implementing dictionaries. 

Let’s see what a suffix trie is: 
Given a string A = a0a1…an – 1, denote by Ai = aiai + 1…an – 1 the suffix of A that begins at position i. Let n = 
length of A. The suffix trie is made by compressing all the suffixes of A1…An – 1 into a trie, as in the 
figure below.  

The suffix trie corresponding to the string “abac” is: 
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Operations on this structure are very easily done: 
- checking whether a string W is a substring of A – it is enough to traverse the nodes starting from 

the root and going through the edges labeled correspondingly to the characters in W (complexity 
O(|W|)) 

- searching the longest common prefix for two suffixes of A – choose nodes u and v in the trie, 
corresponding to the ends of the two suffixes, then, with a LCA algorithm (least common 
ancestor), find the node corresponding to the end of the searched prefix. For example, for “abac” 
and “ac”, the corresponding nodes are 5 and 6. Their least common ancestor is 2, that gives the 
prefix “a”. The authors are strongly recommending [2] for an O(√n) solution, [3] for an accessible 
presentation of a solution in O(lg n) or O(1), and [4] for a state of the art algorithm. 

- finding the k-th suffix in lexicographic order - (complexity O(n), with a corresponding 
preprocessing). For example, the 3rd suffix of “abac” is represented in the trie by the 3rd leaf. 

 
Even if the idea of a suffix trie would be very pleasing at first sight, the simplist implementation, 

where at every step one of the strings suffixes is inserted into the structure leads to an O(n2) complexity 
algorithm.There is a structure called suffix tree[1] that can be built in linear time, which is a suffix trie 
where the chains containing only nodes with the out-degree equal to 1 were compressed into a single edge 
(in the example above, these are represented by the chains 2 -3 – 4 – 5 and 1 – 7 – 8 – 9). Implementing 
the linear algorithm is scarcely possible in a short time, such as during a contest, this determining us to 
search another structure, easier to implement. 

Let’s see which are the suffixes of A, by a depth first traversal of the trie. Noting that during the depth 
first search we have to consider the nodes in the ascending lexicographic order of the edges linking them 
to their father, we gain the following suffix array: 

 
: 
 
 
 

abac    = A0
ac        = A2
bac      = A1
c          = A3
 
It is easy to see that these are sorted ascending. To store them, it is not necessary to keep a vector 

of strings; it is enough to maintain the index of every suffix in the sorted array. For the example above, we 
get the array P = (0, 2, 1, 3), this being the suffix array for the string “abac”. 
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2    The suffix array data structure 
 
 
2.1. How do we build a suffix array? 
 

The first method we may think of is sorting the suffixes of A using an O(n lg n) sorting algorithm. 
Since comparing two suffixes is done in O(n), the final complexity will reach O(n2lg n). Even if this 
seems daunting, there is an algorithm of complexity O(n lg n), relatively easy to understand and code. If 
asymptotically its building time is greater that that of a suffix tree practice taught us that in reality 
constructing a suffix array is much faster, because of the big constant that makes the linear algorithm to be 
slower than we might think. Moreover, the amount of memory used implementing a suffix array with O(n) 
memory is 3 to 5 times smaller than the amount needed by a suffix tree. 
 

The algorithm is mainly based on maintaining the order of the string’s suffixes sorted by their 2k 
long prefixes. We shall execute m = [log2 n] (ceil) steps, computing the order of the prefixes of length 2k 
at the kth step. It is used an m x n sized matrix. Let’s denote by Ai

k the subsequence of A of length 2k 
starting at position i. The position of Ai

k in the sorted array of Aj
k subsequences (j = 1, n) is kept in P(k, i).

  
When passing from step k to step k + 1, all the pairs of subsequences Ai

k and Ai+2^k
 k

 are 
concatenated, therefore obtaining the substrings of length 2k+1. For establishing the new order relation 
among these, the information computed at the previous step must be used. For each index i it is kept a pair 
formed by P(k, i) and P(k, i + 2^k) . The fact that i + 2k may exceed the string’s bounds must not bother us, 
because we shall fill the string with the “$” character, about which we shall consider that it’s 
lexicographically smaller than any other character. After sorting, the pairs will be arranged conforming to 
the lexicographic order of the strings of length 2k+1. One last thing that must be remembered is that at a 
certain step k there may be several substrings Ai

k = Aj
k, and these must be labeled identically (P(k, i) must 

be equal to P(k, j)). 
An image tells more that a thousand words: 

 
bobocel 
 
step 0: 

0404123 
bobocel 
 
step 1: 

0405123 
bobocel 
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obocel$ 
 
step 2: 

0516234 
bobocel 
obocel$ 
bocel$$ 
ocel$$$ 
 
step 3: 

0516234 
bobocel 
obocel$ 
bocel$$ 
ocel$$$ 
cel$$$$ 
el$$$$$ 
l$$$$$$ 
$$$$$$$ 
 
Below is a pseudo-code showing the main steps that must be followed: 
 
n ← length(A) 
for i ← 0, n – 1 
 P(0, i) ← position of Ai in the ordered array of A‘s characters
cnt ← 1 
for k ← 1, [log2n] (ceil) 
 for i ← 0, n – 1 
  L(i) ← (P(k – 1, i) , P(k – 1, i + cnt)  , i) 
 sort L 
 compute P(k, i) , i = 0, n - 1 
 cnt ← 2 * cnt 
 
 

 5



To be noticed that a certain way of numbering the substrings is not necessarily needed, while a 
valid order relation among them is kept. In order to reach the O(n lg n) complexity, radix sort is 
recommended (two times count sort), getting an O(n) time complexity per sort operation. To make the 
implementation easier one may use the sort() function from STL(Standard Template Library, a library 
containing data structures and algorithms in C++). The complexity may be raised to O(n lg2 n) worst case, 
but the implementation will become much easier, the differences being scarcely noticeable for strings with 
lengths smaller than 100 000. 
 

Here you can see an extremely short implementation for suffix arrays in O(n lg2 n). 
 
# include <cstdio> 
#include <cstring> 
#include <algorithm> 
using namespace std; 
 
#define MAXN  65536 
#define MAXLG 17 
 
char A[MAXN]; 
struct entry { 
    int nr[2], p; 
} L[MAXN]; 
int P[MAXLG][MAXN], N, i, stp, cnt; 
 
int cmp(struct entry a, struct entry b) 
{ 
    return a.nr[0] == b.nr[0] ? (a.nr[1] < b.nr[1] ? 1 : 0) : (a.nr[0] < b.nr[0] ? 1 : 0); 
} 
 
int main(void) 
{ 
    gets(A); 
    for (N = strlen(A), i = 0; i < N; i ++) 
        P[0][i] = A[i] - 'a'; 
    for (stp = 1, cnt = 1; cnt >> 1 < N; stp ++, cnt <<= 1) 
    { 
        for (i = 0; i < N; i ++) 
        { 
            L[i].nr[0] = P[stp - 1][i]; 
            L[i].nr[1] = i + cnt < N ? P[stp - 1][i + cnt] : -1; 
            L[i].p = i; 
        } 
        sort(L, L + N, cmp); 
        for (i = 0; i < N; i ++) 
            P[stp][L[i].p] = i > 0 && L[i].nr[0] == L[i - 1].nr[0] && L[i].nr[1] == L[i - 1].nr[1] ? 
P[stp][L[i - 1].p] : i; 
    } 
    return 0; 
} 

  
The suffix array will be found on the last row of matrix P. Searching the kth suffix is now 

immediate, so we won’t return to this aspect. The quantity of memory used may be reduced, using only 
the last two lines of the matrix P. It is a trade-off, as in this case the structure will not be able any more to 
execute efficiently the following operation. 
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2.2. Computing the longest common prefix (LCP) 
 

Given two suffixes of a string A, compute their longest common prefix. We have shown before 
that with a suffix tree this can be achieved in O(1), with a corresponding pre-calculation. Let’s see if a 
suffix array can reach the same performance. 

Let two suffixes Ai si Aj. Using matrix P, one can iterate descending from the biggest k down to0 
and check whether Ai

k = Aj
k. If the two prefixes are equal, a common prefix of length 2k had been found. 

We only have left to update i and j, increasing them both by 2k and check again if there are any more 
common prefixes. 

The LCP computing function’s code is extremely simple: 
 
int lcp(int x, int y) 
{ 
    int k, ret = 0; 
    if (x == y) return N - x; 
    for (k = stp - 1; k >= 0 && x < N && y < N; k --) 
        if (P[k][x] == P[k][y]) 
            x += 1 << k, y += 1 << k, ret += 1 << k; 
    return ret; 
} 

 
The complexity is O(lg n) for computing one of these prefixes. Reducing this query to an O(1) 

complexity, is based on the following observation: lcp(x, y) = minimum { lcp(x, x + 1), lcp(x + 1, x + 2), 
… lcp(y – 1, y) }. The proof is immediate, if we look at the corresponding suffix tree. Therefore it is 
enough to compute the longest common prefix for all the consecutive pairs of suffixes (O(n lg n) time) 
and introduce an additional structure that allows minimum range queries in O(1). The most efficient 
structure is that of RMQ(range minimum query), that we won’t discuss in here, being studied in detail in 
[3], [4] and [5]. With another O(n lg n) preprocessing required by the new structure, we can now answer 
to the lcp queries in O(1). The structure needed by RMQ is also using O(n lg n) memory, thus the final 
time and memory are O(n lg n). 
 
2.3. Searching 
 
Since the suffix array offers the order of A’s suffixes, searching a string W into A is easily done with a 
binary search. Since comparing is done in O(|W|), the search will have an O(|W| lg n) worst case 
complexity. Paper [6]   offers both the data structure and the searching algorithm some refinements that 
allow reducing the time to O(|W| + lg n), but we do not find this very useful during a programming contest 
 

 
3    Applications in contest problems 
 

We tried to gather as many problems as possible that can be solved using the suffix arrays. Going 
through all the problems at the first reading would seem rather difficult for a reader who had the first 
contact with suffix arrays by reading this paper. To make the lecture easier, the problems are arranged in 
an increasing difficulty order. 
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Task 1: hidden password (ACM 2003, abridged) 
 

Consider a string of length n (1 <= n <= 100000). Determine its minimum lexicographic rotation. 
For example, the rotations of the string “alabala” are: 
alabala 
labalaa 
abalaal 
balaala 
alaalab 
laalaba 
aalabal 
and the smallest among them is “aalabal”. 
 
Solution: 

Usually, when having to handle problems that involve string rotations, one would rather 
concatenate the string with itself in order to simplify the task. After, the minimal sequence of length n is 
requested. As their order is determined by the order of the string’s suffixes – although there is a linear 
solution presented in [10]- suffix arrays are one easy gimmick that can solve the problem instantly. 
 
 
Problem 2: array (training camp 2004)  

Consider an array c1c2...cn consisting of n(1 ≤ n ≤ 30 000)) elements from the set {A, B}. 
Concatenate the array with itself and obtain an array of length 2n. For an index k (1≤k≤2n) consider the 
subsequences of length at most n that end on position k, and among these let s(k) be the smallest 
lexicographic subsequence. Determine the index k for which s(k) is longest. Hint: Let X and Y bet two 
arrays as defined previously and « o » the concatenation operator. In this problem you will consider that X 
> X o Y. 

Solution: 
The searched subsequence is the smallest lexicographic rotation of the given array. Denote by Si

k 
the substring of length k that begins on position i. Let Si

n be the smallest substring of length n in the string 
obtained by concatenation. Supposing by absurd that s(i + n - 1) < n would mean that there is an i’ (i < i’ ≤ 
j) so that Si’ j – i’ + 1 is smaller than Si

n. From the condition in the problem’s text, we have Si’
j-i’+1 > Si’

n; but 
Si’

n > Si
n => contradiction. 
Although there is an O(n) algorithm that would easily solve this, the method used during the 

contest by one of the authors(and that gained a maximum score) used suffix arrays, as in the previous task. 
 
 
Problem 3: substr (training camp 2003)  
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You are given a text consisting of N characters (big and small letters of the English alphabet and 
digits). A substring of this text is a subsequence of characters that appear on consecutive positions in the 
text. Given an integer K, find the length of the longest substring that appears in the text at least K times (1 
≤ N ≤ 16384). 
 
Solution: 

Having the text’s suffixes sorted, iterate with a variable i from 0 to N – K and compute the longest 
common prefix of suffix i and suffix i + K – 1. The biggest prefix found during this operation represents 
the problem’s solution. 
 
 
Problem 4: guess (training camp 2003) 
 

You and the Peasant play a totally uninteresting game. You have a large string and the Peasant 
asks you questions like ”does the following string is a substring of yours?” The Peasant asks you many 
questions and you have to answer as quick s you can. Because you are a programmer, you think that it 
would be better to know all the substrings that appear in your string. But before doing all this work, you 
are wondering how many distinct substrings are in your string (1 ≤ your string’s length ≤ 10 000) 
 
Solution: 

This is actually asking to compute the number of nodes (without root) of a string’s corresponding 
suffix trie. Each distinct sequence of the string is determined by the unique path traversed in the suffix trie 
when searching it. As in the example above, „abac” has the substrings „a”, „ab”, „aba”, „abac”, „ac”, „b”, 
„ba”, „bac” and „c”, determined by the path starting from the root and going toward nodes 2, 3, 4, 5, 6, 7, 
8 and 9 in this order. Since building the suffix trie is not always a pleasant job and has a quadratic 
complexity, an approach using suffix arrays would be much more useful. Get the sorted array of suffixes 
in O(n lg n), then search the first position where the matching between every pair of consecutive suffixes 
fails (using the lcp function), and add the number of remaining characters to the solution. 
 
 
 
Problem 5: seti (ONI 2002 – abridged) 
 

Given a string of length N (1≤N≤131072) and M strings of length at most 64, count the number of 
matchings of every small string in the big one. 
 
Solution: 

Do as in the classical suffix arrays algorithm, only that it is sufficient to stop after step 6, where an 
order relation between all the strings of length 26 = 64 was established. Having sorted the substrings of 
length 64, each query is solved by two binary searches. The overall complexity is O(N lg 64 + M * 64 * lg 
N) = O(N + M lg N). 
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Problem 6: common subsequence (Polish Olympiad 2001 and Top Coder 2004 - abridged) 
There are given three strings S1 , S2  şi S3, of lengths m, n and p ( 1 <= m, n, p <= 10000). Determine their 
longest common substring. For example, if S1 = abababca S2 = aababc and S3= aaababca, their longest 
common substring would be ababc. 
 
Solution: 
If the strings were smaller in length, the problem could have been easily solved using dinamic 
programming, leading to a O(n2) complexity. 
 
Another idea is to take each suffix of S1 and try finding its maximum matching in the other two strings. A 
naive maximum matching algorithm gives an O(n^2) complexity, but using KMP [8], we can achieve this 
in O(n), and using this method for each of S1’s suffixes we would gain an O(n^2) solution. 
 
Let’s see what happens if we sort the suffixes of the three strings: 
a$ 
abababca$ 
ababca$ 
abca$ 
bababca$ 
babca$ 
bca$ 
ca$ 
aababc# 
ababc# 
abc# 
babc# 
bc# 
c# 
 
a@ 
aaababca@ 
aababca@ 
ababca@ 
abca@ 
babca@ 
bca@ 
ca@ 
 
Now we merge them (consider $ < # < @ < a …): 
 
a$ 
a@ 
aaababca@ 
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aababc# 
aababca@ 
abababca$ 
ababc# 
ababca$ 
ababca@ 
abc# 
abca$ 
abca@ 
bababca$ 
babc# 
babca$ 
babca@ 
bc# 
bca$ 
bca@ 
c# 
ca$ 
ca@ 
 
The maximal common substring corresponds to the longest common prefix of the three suffixes ababca$, 
ababc# and ababca@. Let’s see where they appear in the sorted array: 
 
 
a$ 
a@ 
aaababca@ 
aababc# 
aababca@ 
abababca$ 
ababc# 
ababca$ 
ababca@ 
abc# 
abca$ 
abca@ 
bababca$ 
babc# 
babca$ 
babca@ 
bc# 
bca$ 
bca@ 
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c# 
ca$ 
ca@ 
 
 

This is where we can figure out that the solution is a sequence i..j in the array of sorted suffixes, 
with the property that it contains at least one suffix from every string, and the longest common prefix of 
the first and last suffix in the suffix is maximum, giving the solution for this problem. Other common 
substrings of the three strings would be common prefixes for some substring in the suffix array, e.g. bab 
for bababca$ babc# babca$, or a for a$ a@ aaababca@ aababc#. 
 

To find the sequence with the longest common prefix, go with two indexes, START and END, 
over the suffixes, where START goes from 1 to the number of suffixes, and END is the smallest index 
greater than START so that between START and END there are suffixes from all the three strings. In this 
way, the pair [START, END] will hit the optimal sequence [i..j]. This algorithm is linear because START 
takes N values while END is incremented at most N times. 
 

In order to sort the array containing all the suffixes, it is not necessary to sort the suffixes of every 
string in part and then merge them, as this would increase the complexity if implemented without any 
smart gimmicks. We can concatenate the three strings into a single one (abababca$aababc@aaababca# for 
the example above) and then sort its suffixes. 
 
 
 
Problem 7: the longest palindrome (USACO training gate) 
 
Given a strings S of length n (n <= 20000) determine its longest substring that also is a palindrome. 
 
Solution: 

For a fixed i, computing the longest palindrome that is centered in i requires the longest common 
prefix of the substring S[i..n] and the reversed S[1..i]. Merge the sorted suffixes of string S and the 
reversed string S’, then query the longest common prefix for S[i] and S’[n – i + 1] (S’[n – i + 1] = S[1..i]). 
Since this is done in O(lg n), the overall complexity is O(n lg n). The case where the searched palindromes 
have an even length is treated in an analogous way.  
 
 
 
Problem 8: template (Polish Olympiad of Informatics 2004, abridged) 
 

For a given string A, find the smallest length of a string B so that A can be obtained by sticking 
several B’s together (when sticking them, they can overlap, but they have to match). 

 
Example: ababbababbabababbabababbababbaba 
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Result: 8 
The minimum length B is “ababbaba” 
 
A can be obtained from B this way: 
 
ababbababbabababbabababbababbaba 
ababbaba 
     ababbaba 
            ababbaba 
                   ababbaba 
                        ababbaba 
 
Solution: 
 The simplest solution uses suffix arrays a balanced tree and a max-heap. It’s obvious that the 
searched pattern is a prefix of A. Having sorted the suffixes of A, we shall add to B, step by step, one 
more ending character. At each step we keep to pointers L and R, representing the first and the last suffix 
in the array that have B as a prefix. The balanced tree will hold permanently the starting positions of the 
suffixes between L and R, and the heap will keep the distances between consecutive elements of the tree.   
 When inserting a new character into B, by two binary searches we get the new L’ and R’, with L 
≤ L’ and R’ ≤ R. We must also update the tree and the heap. Introduce characters into B while the 
biggest(first) element in the heap is smaller or equal to the length of B. B’s final length offers the searched 
result. The final complexity is O(n lg n), where n is the length of A.  
 
Solution2 (Mircea Paşoi): 
 For the string S, compute for every i from 1 to n the length of the longest prefix of S with S[i..n]. 
This can be done using suffix arrays. 
For example, if S is the string and T is the array keeping the maximal matchings, then: 
 
S = a b b a a b b a a 
T = 9 0 0 1 5 0 0 1 1 
 
For every possible k in the pattern (1 <= k <= n) check whether the maximum distance d between the 
indexes of the two farthest elements with values greater than equal to k in the string T is greater than k. 
For example: 
 
k=9: 9 - - - - - - - -    => d=9, good. 
k=8: 9 - - - - - - - -    => d=9, not good. 
k=7: 9 - - - - - - - -    => d=9, not good. 
k=6: 9 - - - - - - - -    => d=9, not good  
k=5: 9 - - - 5 - - - -    => d=5, good. 
k=4: 9 - - - 5 - - - -    => d=5, not good. 
k=3: 9 - - - 5 - - - -    => d=5, not good. 
k=2: 9 - - - 5 - - - -    => d=5, not good.. 
k=1: 9 - - 1 5 - - 1 1    => d=3, not good. 
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 The smallest k where the distance d is small enough represents the length of the searched pattern 
(in this case k = 5).  
 To get an algorithm of good complexity, this step must be done efficiently. We may use a 
segment tree, walk with k from 1 to n and delete from the tree the elements smaller than k, while updating 
the tree so that it will answer queries like “what is the greatest distance between two consecutive elements 
in the structure. The algorithm has a complexity of O(n log n). A detailed presentation of the segment tree 
can be found in [9] and [10]. 
 
 
 
Problem 9: (Baltic Olympiad of Informatics 2004)  
 

A string s is called an (K,L)-repeat if S is obtained by concatenating K≥1 times some seed string T 
with length L≥1. For example, the string  

 
S = abaabaabaaba 

 

is a (4,3)-repeat with  
 

T = aba 
 

as its seed string. That is, the seed string T is 3 characters long, and the whole string S is obtained by 
repeating T 4 times.  

Write a program for the following task: Your program is given a long string U consisting of 
characters ‘a’ and/or ‘b’ as input. Your program must find some (K,L)-repeat that occurs as substring 
within U with K as large as possible. For example, the input string 

 
U = babbabaabaabaabab 

 
contains the underlined (4,3)-repeat S starting at position 5. Since U contains no other contiguous 
substring with more than 4 repeats, your program must output this underlined substring.  
 
Solution: 

We want to find out for a fixed L how to get the greatest K so that in the string U there will be a 
substring S which is a (K, L) - repeat. Check this example: U = babaabaabaabaaab L = 3 and a fixed 
substring X = aab that begins on position 4 of U. We can try to extend the sequence aab by repeating it 
from its both ends as much as possible, as can be seen below: 
 
b 
a a b a a b 
a b a a b a a b a a b a a a b 

  a b a a b a a b a a b a a b a 
   

Extending the prefix of length L this way to the left, then to the right (in our example the prefix of 
length 3) of the obtained sequence, we get the longest repetition of a string of length L satisfying the 
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property that the repetition contains X as a substring the (in the case where the repetition is (1, L) this is 
not true, but it’s a trivial case) .  

Now we see that in order to identify within U all the (K, L) repetitions with a fixed L, it is 
sufficient to partition the string in n/L chunks and then extend them. It will not be possible to do this in 
O(1) for every chunk, thus the final algorithm will have a final complexity of O(n/1 + n/2 + n/3 + .. + n/n) 
(every chunk can be repeated partially or totally only at left or right, and we will not extend every chunk 
separately, but we will merge the adjacent chunks into a single one; if we had p consecutive chunks of 
same length, their maximum extensions would be found in O(p)). But we know that the sum 1 + ½ + 1/3 + 
¼ + … + 1/n – ln n is convergent toward a known constant c, known as Euler’s constant, and c < 1, so we 
can easily figure out that O(1 + ½ + … + 1/n) = O(ln n) so the algorithm would have an O(n lg n) 
complexity if the extensions would have been computed easily. 
 

Now we can use the suffix trees. To find out how much the sequence U[i..j] can be extended to the 
right, we need to find the longest common prefix of U[i..j] and U[j + 1..n]. To extend it to the left, it’s 
sufficient to reverse U, that would lead to the same problem. We have seen how to compute the longest 
common prefix in O(1) using the suffix array, that is built in O(n lg n) time, then do the required RMQ 
pre-calculation in O(n lg n) that allows the lcp queries to be answered in O(1). The final complexity is O(n 
lg n). 
 
 
 
Problem 10: (ACM SEER 2004) 
 

Given a string S, determine for each of its prefixes if it’s a periodic string. Hence, for every i (2 <= 
i <= N) we are interested in the greatest K > 1 (if there exists such one) satisfying the property that S’s 
prefix of length ican be also written as Ak, or A concatenated with itself k times, for some string A. We 
are also interested which is that k. (0 <= N <= 1000000) 

 
Example:  aabaabaabaab 
Result: 
2 2 
6 2 
9 3 
12 4 
 
Explanation: prefix aa has the period a; prefix aabaab has the period aab; prefix aabaabaab has the period 
aab; prefix aabaabaabaab has the period aab. 
 
Solution: 
 See what happens when trying to match a string with one of its suffixes. Take a string and break it 
in two parts, getting a prefix and a suffix 
 
S  =  aab aabaabaaaab 
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suf = aab aabaaaab 
pre = aab 
 

If the suffix matches some number of characters of the initial string which is >= |pre|, it means that 
pre is also a prefix of the suffix and we can also break the suffix in prefix and suffix1, and the string can 
be broken in prefix, prefix and suffix1. If the string matches some arbitrary number of characters from the 
string >= 2|pre| then the suffix matches suffix1 on a number of characters  >= |pre| thus suffix1 can be 
written as prefix and suffix2, then suffix can be written as prefix prefix suffix2, so S can be written as 
prefix prefix prefix sufix2. 

 
S    = aab aab aab aaaab 
suf  = aab aab aaaab 
suf1 = aab aaaab 
pre = aab 
 
Observe that if S matches at least k * |prefix| characters of its suffix, then S has a prefix of length (k + 1) * 
|prefix|, which is periodic. 
 
Using the suffix array, we can find out for each suffix its maximum matching with the initial string. If the 
ith suffix matches the first k * (i – 1) positions then we can update the information that says that the 
prefixes of length j * (i – 1) (where 2 <= j <= k) are periodic. For every suffix Si  the update has a 
maximum complexity of O(n/(i – 1)). Thus the algorithm gets an overall complexity of O(n log n). 
 
There is a similar solution using the KMP algorithm, that can be done in O(n), but it doesn’t match this 
paper’s purpose. 
 
 
 
 

4    Conclusion 
 

During the contests it is more likely to use the O(n lg2 n) solution, slower, but easier to implement. 
If possible, try not to use more than O(n) memory. The running time of the two solutions is scarcely 
different for a relatively small input string, and during a contest, the solution’s simplicity makes the 
implementation and debugging considerably easier. 

We draw the final conclusion that the suffix arrays are a very useful data structure, extremely easy 
to implement. Thus it’s not strange that during the last years many problems that were using it appeared in 
programming contests. For any questions or suggestions, please contact the authors using the following e-
mail addresses: 
 
azotlichid@yahoo.com
cosminn@gmail.com
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