CS448f: Image Processing For Photography and Vision

Lecture 2

Today:

- More about ImageStack
- Sampling and Reconstruction
- Assignment 1

ImageStack

A collection of image processing routines

- Each routine bundled into an Operation class
 - void help()
 - void parse(vector<string> args)
 - Image apply(Window im, ... some parameters ...)

ImageStack Types

- Window:
 - A 4D volume of floats, with each scanline contiguous in memory.

```
class Window {
  int frames, width, height, channels;
  float *operator()(int t, int x, int y);
  void sample(float t, float x, float y, float *result)
};
```

ImageStack Types

- Image:
 - A subclass of Window that is completely contiguous in memory
 - Manages its own memory via reference counting (so you can make cheap copies)

```
class Image : public Window {
   Image copy();
};
```

Image and Windows

Window(Window) new reference to the same data Window(Window, int, int ...) Selecting a subregion

Image(Image) new reference to same data Image.copy() copies the data

4 Way to Use ImageStack

- Command line
- As a library
- By extending it
- By modifying it

Fun things you can do with ImageStack

- ImageStack –help
- ImageStack –load input.jpg –save output.png
- ImageStack –load input.jpg –display
- ImageStack –load a.jpg –load b.jpg –add –save c.jpg
- ImageStack –load a.jpg –loop 10 –scale 1.5 –display
- ImageStack –load a.jpg –eval "(val > 0.5) ? val : 0"
- ImageStack –load a.jpg –resample width/2 height/2
- ... all sorts of other stuff

Where to get it:

- The course website
- http://cs448f.stanford.edu/imagestack.html

float *operator()(int t, int x, int y)

Sampling and Reconstruction

void sample(float t, float x, float y, float *result);

Making an image larger:

Making an image smaller:

Rotating an image:

Warping an image (useful for 3D graphics):

Enlarging images

- We need an interpolation scheme to make up the new pixel values
- (applet)
- Interpolation = Convolution

What makes an interpolation good?

 Well... let's look at the difference between the one that looks nice and the one that looks bad...

Fourier Space

- An image is a vector
- The Fourier transform is a change of basis
 - i.e. an orthogonal transform
- Each Fourier basis vector is something like this:

Fourier Space

- The Fourier transform expresses an image as a sum of waves of different frequencies
- This is useful, because our artifacts are confined to high frequencies
- In fact, we probably don't want ANY frequencies that high in our output – isn't that what it means to be smooth?

Deconstructing Sampling

 We get our output by making a grid of spikes that take on the input values s:

Deconstructing Sampling

 Then evaluating some filter f at each output location x:

for
$$(i = 1; i < 7; i++)$$
 output[x] $+= f(x-i)*s[i];$

Alternatively

Start with the spikes

Alternatively

Convolve with the filter f

Alternatively

And evaluate the result at x

They're the same

- Method 1:
 for (i = 1; i < 7; i++) output[x] += s[i]*f(i-x);
- Method 2:
 for (i = 1; i < 7; i++) output[x] += f(x-i)*s[i];
- f is symmetric, so f(x-i) = f(i-x)

Start with the (unknown) nice smooth desired result R

Multiply by an impulse train T

Now you have the known sampled signal R.T

Convolve with your filter f Now you have (R.T)*f

And get your desired result R R = (R.T)*f

Therefore

- Let's pick f to make (R.T)*f = R
- In other words, convolution by f should undo multiplication by T
- Also, we know R is smooth
 - has no high frequencies

Meanwhile, in Fourier space...

- Let's pick f' to make (R'*T').f = R'
- In other words, multiplication by f' should undo convolution by T'
- Also, we know R' is zero above some point
 - has no high frequencies

T vs T'

- Turns out, the Fourier transform of an impulse train is another impulse train (with the inverse spacing)
- R'*T':

T vs T'

- All we need to do is pick an f' that gets rid of the extra copies:
- (R'*T').f':

A good f'

- Preserves all the frequencies we care about
- Discards the rest
- Allows us to resample as many times as we like without losing information
- (((((R'*T').f')*T'.f')*T'.f')*T'.f') = R'

Linear

Cubic

Lanczos 3 = sinc(x)*sinc(x/3)

Linear

Cubic

Lanczos 3

A good f'

- Should throw out high-frequency junk
- Should maintain the low frequencies
- Should not introduce ringing
- Should be fast to evaluate
- Lanczos is a pretty good compromise
- Window::sample(...);
- Window::sampleLinear(...);

Inverse Warping

- If I want to transform an image by some rotation R, then at each output pixel x, place a filter at R⁻¹(x) over the input.
- In general warping is done by
 - Computing the inverse of the desired warp
 - For every pixel in the output
 - Sample the input at the inverse warped location

Forward Warping (splatting)

- Some warps are hard to invert, so...
- Add an extra weight channel to the output
- For every pixel x in the input
 - Compute the location y in the output
 - For each pixel under the footprint of the filter
 - Compute the filter value w
 - Add (w.r w.g w.b w) to the value stored at y
- Do a pass through the output, dividing the first n channels by the last channel

Be careful sizing the filter

- If you want to enlarge an image, the filter should be sized according to the *input* grid
- If you want to shrink an image, the filter should be sized according to the *output* grid of pixels
 - Think of it as enlarging an image in reverse
 - You don't want to keep ALL the frequencies when shrinking an image, in fact, you're trying to throw most of them out

Rotation

• Ok, let's use the lanczos filter I love so much to rotate an image:

Original

Rotated by 30 degrees 12 times

Rotated by 10 degrees 36 times

Rotated by 5 degrees 72 times

Rotated by 1 degree 360 times

What went wrong?

Your mission: Make rotate better

- Make it <u>accurate</u> and <u>fast</u>
- First we'll check it's plausible:

```
ImageStack -load a.jpg -rotate <something> -display
```

• Then we'll time it:

```
ImageStack -load a.jpg -time --loop 360 ---rotate 1
```

Then we'll see how accurate it is:

```
for ((i=0;i<360;i++)); do
    ImageStack -load im.png -rotate 1 -save im.png
done
ImageStack -load orig.png -crop width/4 height/4 width/2
    height/2 -load im.png -crop width/4 height/4 width/2
    height/2 -subtract -rms</pre>
```

Targets:

- RMS must be < 0.07
- Speed must be at least as fast as -rotate
- My solution has RMS ~ 0.05
- Speed ~ 50% faster than -rotate (No SSE)
- Prizes for the fastest algorithm that meets the RMS requirement, most accurate algorithm that meets the speed requirement

Grade:

- 20% for having a clean readable algorithm
- 20% for correctness
- 20% for being faster than -rotate
- 40% for being more accurate than -rotate

Due:

- Email your modified Geometry.cpp (and whatever other files you modified) in a zip file to us by midnight on Thu Oct 1
 - cs448f-aut0910-staff@lists.stanford.edu

Finally, Check out this paper:

- Image Upsampling via Imposed Edge Statistics
- http://www.cs.huji.ac.il/~raananf/projects/upsampling/upsampling.html

