
CS448f: Image Processing For 
Photography and Vision

Lecture 2



Today:

• More about ImageStack

• Sampling and Reconstruction

• Assignment 1



ImageStack

• A collection of image processing routines

• Each routine bundled into an Operation class

– void help()

– void parse(vector<string> args)

– Image apply(Window im, … some parameters …)



ImageStack Types

• Window:
– A 4D volume of floats, with each scanline contiguous 

in memory.

class Window {
int frames, width, height, channels;

float *operator()(int t, int x, int y);

void sample(float t, float x, float y, float *result)

};



ImageStack Types

• Image:
– A subclass of Window that is completely 

contiguous in memory

– Manages its own memory via reference counting 
(so you can make cheap copies)

class Image : public Window {

Image copy();

};



Image and Windows

Image

Window Regular Upcasting

Window(Window) new reference to the same data
Window(Window, int, int ...) Selecting a subregion

Image(Image) new reference to same data
Image.copy() copies the data

Image(Window) copies 
data into new Image



4 Way to Use ImageStack

• Command line

• As a library

• By extending it

• By modifying it



Fun things you can do with ImageStack

• ImageStack –help

• ImageStack –load input.jpg –save output.png

• ImageStack –load input.jpg –display

• ImageStack –load a.jpg –load b.jpg –add –save c.jpg

• ImageStack –load a.jpg –loop 10 – –scale 1.5 –display

• ImageStack –load a.jpg –eval “(val > 0.5) ? val : 0”

• ImageStack –load a.jpg –resample width/2 height/2

• ... all sorts of other stuff



Where to get it:

• The course website

• http://cs448f.stanford.edu/imagestack.html



float *operator()(int t, int x, int y)

void sample(float t, float x, float y, float *result);

Sampling and 
Reconstruction



Why resample?

• Making an image larger:



Why resample?

• Making an image smaller:



Why resample?

• Rotating an image:



Why resample?

• Warping an image (useful for 3D graphics):



Enlarging images

• We need an interpolation scheme to make up 
the new pixel values

• (applet)

• Interpolation = Convolution











What makes an interpolation good?

• Well… let’s look at the difference between the 
one that looks nice and the one that looks 
bad…





Fourier Space

• An image is a vector

• The Fourier transform is a change of basis

– i.e. an orthogonal transform

• Each Fourier basis vector is something like 
this:



Fourier Space

• The Fourier transform expresses an image as a 
sum of waves of different frequencies

• This is useful, because our artifacts are 
confined to high frequencies

• In fact, we probably don’t want ANY 
frequencies that high in our output – isn’t that 
what it means to be smooth?



Deconstructing Sampling

• We get our output by making a grid of spikes 
that take on the input values s:

S[0]
S[1] S[2] S[3] S[4]

S[5]

S[6]

S[7] S[8]

S[9]



Deconstructing Sampling

• Then evaluating some filter f at each output 
location x:

x

S[0]
S[1] S[2] S[3] S[4]

S[5]

S[6]

S[7] S[8]

S[9]

for (i = 1; i < 7; i++) output[x] += f(x-i)*s[i];



Alternatively

• Start with the spikes

S[0]
S[1] S[2] S[3] S[4]

S[5]

S[6]

S[7] S[8]

S[9]



Alternatively

• Convolve with the filter f

S[0]
S[1] S[2] S[3] S[4]

S[5]

S[6]

S[7] S[8]

S[9]



Alternatively

• And evaluate the result at x

S[0]
S[1] S[2] S[3] S[4]

S[5]

S[6]

S[7] S[8]

S[9]

x
for (i = 1; i < 7; i++) output[x] += s[i]*f(i-x);



They’re the same

• Method 1:

• Method 2:

• f is symmetric, so f(x-i) = f(i-x)

for (i = 1; i < 7; i++) output[x] += f(x-i)*s[i];

for (i = 1; i < 7; i++) output[x] += s[i]*f(i-x);



Start with the (unknown) nice smooth 
desired result R



Multiply by an impulse train T



Now you have the known 
sampled signal R.T



Convolve with your filter f
Now you have (R.T)*f



And get your desired result R
R = (R.T)*f



Therefore

• Let’s pick f to make (R.T)*f = R

• In other words, convolution by f should undo 
multiplication by T

• Also, we know R is smooth

– has no high frequencies



Meanwhile, in Fourier space…

• Let’s pick f’ to make (R’*T’).f = R’

• In other words, multiplication by f’ should 
undo convolution by T’

• Also, we know R’ is zero above some point

– has no high frequencies



T vs T’

• Turns out, the Fourier transform of an impulse 
train is another impulse train (with the inverse 
spacing)

• R’*T’:



T vs T’

• All we need to do is pick an f’ that gets rid of 
the extra copies:

• (R’*T’).f’:



A good f’

• Preserves all the frequencies we care about

• Discards the rest

• Allows us to resample as many times as we 
like without losing information

• (((((R’*T’).f’)*T’.f’)*T’.f’)*T’.f’) = R’



How do our contenders match up?

Linear



How do our contenders match up?

Cubic



How do our contenders match up?

Lanczos 3 = sinc(x)*sinc(x/3)



How do our contenders match up?

Linear



How do our contenders match up?

Cubic



How do our contenders match up?

Lanczos 3



Lanczos 3



Sinc - The perfect result?



A good f’

• Should throw out high-frequency junk

• Should maintain the low frequencies

• Should not introduce ringing

• Should be fast to evaluate

• Lanczos is a pretty good compromise

• Window::sample(...);

• Window::sampleLinear(...);



Inverse Warping

• If I want to transform an image by some 
rotation R, then at each output pixel x, place a 
filter at R-1(x) over the input.

• In general warping is done by

– Computing the inverse of the desired warp

– For every pixel in the output

• Sample the input at the inverse warped location



Forward Warping (splatting)

• Some warps are hard to invert, so...

• Add an extra weight channel to the output

• For every pixel x in the input
– Compute the location y in the output

– For each pixel under the footprint of the filter
• Compute the filter value w

• Add (w.r w.g w.b w) to the value stored at y

• Do a pass through the output, dividing the 
first n channels by the last channel



Be careful sizing the filter

• If you want to enlarge an image, the filter 
should be sized according to the input grid

• If you want to shrink an image, the filter 
should be sized according to the output grid of 
pixels

– Think of it as enlarging an image in reverse

– You don’t want to keep ALL the frequencies when 
shrinking an image, in fact, you’re trying to throw 
most of them out





Rotation

• Ok, let’s use the lanczos filter I love so much 
to rotate an image:



Original



Rotated by 30 degrees 12 times



Rotated by 10 degrees 36 times



Rotated by 5 degrees 72 times



Rotated by 1 degree 360 times



What went wrong?



Your mission: Make rotate better

• Make it accurate and fast

• First we’ll check it’s plausible:
ImageStack -load a.jpg -rotate <something> -display

• Then we’ll time it:
ImageStack -load a.jpg -time --loop 360 ---rotate 1

• Then we’ll see how accurate it is:
for ((i=0;i<360;i++)); do

ImageStack -load im.png -rotate 1 -save im.png

done

ImageStack -load orig.png -crop width/4 height/4 width/2 

height/2 -load im.png -crop width/4 height/4 width/2 

height/2 -subtract -rms



Targets:

• RMS must be < 0.07

• Speed must be at least as fast as -rotate 

• My solution has RMS ~ 0.05

• Speed ~ 50% faster than -rotate (No SSE)

• Prizes for the fastest algorithm that meets the 
RMS requirement, most accurate algorithm that 
meets the speed requirement



Grade:

• 20% for having a clean readable algorithm

• 20% for correctness

• 20% for being faster than -rotate

• 40% for being more accurate than -rotate



Due:

• Email your modified Geometry.cpp (and 
whatever other files you modified) in a zip file 
to us by midnight on Thu Oct 1

– cs448f-aut0910-staff@lists.stanford.edu



Finally, Check out this paper:

• Image Upsampling via Imposed Edge Statistics
• http://www.cs.huji.ac.il/~raananf/projects/upsampling/upsampling.html


