
OptiQL: LINQ on
Delite

What is LINQ?

 Language Integrated Query (LINQ) is
a set of language and framework
features for writing structured type-
safe queries over local object
collections and remote data sources.

 Can query any collection
implementing IEnumerable<T>

 Equivalent to Iterable[T] in Scala

What is OptiQL

 The initial version is LINQ with some
modifications implemented on Delite

 Get parallelization from using Delite

 Add Relational Algebra rules to
further optimize OptiQL programs

Outline

 LINQ Architecture

 Implications for Scala, OptiQL and Delite

 LINQ Queries

 Implementation strategies on Delite

 Benchmarking LINQ/OptiQL

LINQ: Intro

 Basic units are sequences and
elements

 This is a local sequence represented
by a local collection of objects in
memory

 Query operators are methods that
typically accept an input sequence
and emit a transformed output
sequence

Query Operator Example

 However, operators are implemented as
extension methods (similar to infix_ methods)

 So can write queries as this:

Fluent Syntax: Chaining Query
Operators

 Similar to other DSLs we have seen,
LINQ uses chaining to allow for more
complex queries

Chaining Query Operators

Lambda Expressions

 Lambda expressions provide flexibility

 The operators encode common
machinery, while lambda provide
specialization

 Lots of DSLs do this, hence why functional
languages are ideal for DSL
implementation

Query Expressions

 Need special compiler support for this

 Can be achieved via a Scala compiler
plugin

 Maybe we can do better in the future

Deferred Execution

 Most query operators execute not
when constructed, but when
enumerated

 Some operators that have no way of
deferring (like Count) execute
immediately

Implementing Deferred Execution

 Return decorator sequence with no
backing structure of its own

Implementing Deferred Execution

 Very easy to do in C#

 The yield automatically constructs a
decorator with source as the backing
structure

 yield in Scala is different and won’t cause
deferral

Chaining Decorators

 C# yields will cause automatic
chaining

Chaining Decorators

Subqueries

Implications for OptiQL and Delite

 Subquery performance can be
improved dramatically

 Each Query Operator should be
implemented as a Delite Op

 While Scala doesn’t support deferral,
we can achieve same or better result
with fusing Query Ops

LINQ OPERATORS

LINQ Operator Overview

 Standard LINQ query operators fall
into three categories:

 Sequence in, sequence out

 Sequence in, single element or scala out

 Nothing in, sequence out

Sequence => Sequence

Sequence => Sequence

 Filtering
 Where, Take, TakeWhile, Skip, SkipWhile, Distinct

 Projecting
 Select, SelectMany

 Joining
 Join, GroupJoin

 Ordering
 OrderBy, ThenBy, Reverse

 Grouping
 GroupBy

 Set operators
 Concat, Union, Intersect, Except

 Zip operator

Sequence => Element or Scalar

 Element operators

 First, Last, Single, ElementAt,
DefaultIfEmpty,…

 Aggregation methods

 Aggregate, Average, Count, Sum, Max,Min

 Quantifiers

 All, Any, Contains, SequenceEqual

Void => Sequence

 Manufactures a simple sequence

 Empty, Range, Repeat

Operator Example: Where

 returns elements of the sequence that
satisfy the predicate

 Implemented as follows:

Where: Baseline Scala (no deferral)

class Queryable[TSource](source: Iterable[TSource]) {
import OptiQL._

def Where(predicate: TSource => Boolean) = {
if(predicate == null) throw new IllegalArgumentException("Predicate is Null")
source.filter(predicate)

}

}

Where: Delite Op Version
trait QueryableOpsExp extends QueryableOps with EffectExp {
this: QueryableOps with OptiQLExp =>

case class QueryableWhere[TSource:Manifest](s: Exp[DataTable[TSource]],
predicate: Exp[TSource] => Exp[Boolean]) extends DeliteOpLoop[DataTable[TSource]] {

val size = s.size
val v = fresh[Int]
val body : Def[DataTable[TSource]] = new DeliteCollectElem[TSource, DataTable[TSource]](

alloc = reifyEffects(DataTable[TSource]()),
func = reifyEffects(s(v)),
cond = reifyEffects(predicate(s(v)))::Nil
)
}

def queryable_where[TSource:Manifest](s: Exp[DataTable[TSource]],
predicate: Exp[TSource] => Exp[Boolean]) = QueryableWhere(s,predicate)

}

Operator Example: Select

 This is basically a map

 Implementation is also pretty simple:

 In Scala, just use a map (but no
deferral)

Select: Using Delite Ops

 Very simple to implement using Delite
Ops
case class Select[A:Manifest,B:Manifest](in: Exp[DataTable[A]]

, selector: Exp[A] => Exp[B]) extends DeliteOpMap[A,B,Vector] {
val alloc = reifyEffects(DataTable[B]())
val v = fresh[A]
val func = reifyEffects(selector(v))

}

Operator Example: Join

 Join (inner), combines to sequences
and creates a sequence that contains
all the elements from each sequence
that agree on join conditions merged
in some fashion

val q4 = calls.Join(contacts)(_.Number, _.Phone, (call, contact) => new {
val Name = contact.FirstName + " " + contact.LastName
val Number = call.Number
val Duration = call.Duration

})

Needs its own Delite Op

 Join needs its own Op, too different of
a pattern to be implemented by an
existing OP

 There are also multiple possible
“physical” implementation of a Join,
so Join is a good candidate for an Op

BENCHMARKING OPTIQL

TPCH Intro

 Transaction Processing Performance
Council (TPC) is non-profit organization
with the mission of disseminating
objective, verifiable TPC performance
data to the industry

 TPC-C: an on-line transaction processing
benchmark
 Not a good candidate, about making

transactions

 TPC-H: An ad-hoc, decision support
benchmark
 Good candidate, about making queries of data
 Challenge: Smallest dataset is very taxing

OptiQL: TPCH Example

OptiQL: TPCH Example

OptiQL: TPCH Example

OptiQL: TPCH Example

OptiQL: Challenges

 Requires efficient Filter and Join
(database) operations
 Need to add DeliteOpScan and DeliteOpJoin

 Anonymous classes and user-defined
structural types

val result = lineItems Where(_.shipDate <= Date(“1998-12-01”) +
Interval(90).days.Select (g => new {

val returnFlag = g.key._1

val lineStatus = g.key._2

})

Must be able to preserve type safety in lifted representation!

e.g. result.returnFlag should work

Implications from this benchmark

 Need to optimize sub-queries and
aggregates (fusing will be key)

 Need to modify LINQ join to accept
more than one collection

