PR)
PRLESH
BRI

Lightweight Modular Staging

Tiark Rompf, Martin Odersky
EPFL

Arvmd Sujeeth, Hassan Chafi, Kevin Brown,
oukJoonfg Lee, Kunle Olukotun
Stanford UnlverS|ty

Qutline

m Later lectures will discuss general DSL
implementation strategies

m This lecture is about how we do

things in Scala and Delite
= Help you get a quick start on your projects
= Explore the code base

Goal: embedded parallel DSL

m We want to be able to:

= Build an intermediate representation (IR)
of user programs

= Analyze and optimize the IR

= Generate parallel code
= Scala, C/C++, CUDA, ...

= ...all without working too hard

Modular Staging Approach

Modular Staging provides a hybrid approach

DSLs adopt front-el
highls/ express Stand-alone DSL an customize IR and
embedding lang implements everything ElCRIWEle GCQls N EEEE

Type
checker

Parser

Typical Compiler

GPCE’'10: Lightweight modular staging: a pragmatic
approach to runtime code generation and compiled DSLs

How do you build an IR at
runtime?

= Metaprogramming
= C++ expression templates
C# expression trees
Haskell templates
MetaOCaml staging constructs

m Our approach is LMS
= Lightweight: uses just Scala’s type system

= Modular: pick and choose how to represent
nodes, what optimizations to apply, and which
generators to use at runtime

= Staging: a program that writes other (optimized)
programs

Strategy

m Programs usually operate on concrete
types (Int, Matrix, List, etc.)

m Instead, we’'ll use an abstract
placeholder to represent types

O Rep[T]

= Why?

= What happens when you try to operate on
a Rep[T]?

Looking closer at Rep|T]

m Rep[T] is an abstract type constructor

= We can define any concrete type constructor
we want

trait StringRep extends Base {
type Rep[T] = String
b

m But strings aren’t that useful. What if we had
a type that represented an Expression?

trait ExpRep extends Base {
type Rep[T] = Exp[T]
b

Defining an IR

trait Expressions {
// constants/symbols (atomic)
abstract class Exp[T]
case class Const[T](x: T) extends Exp[T]
case class Sym[T](n: Int) extends Exp[T]

// operations (composite, defined in subtraits)
abstract class Def[T]

// additional members for managing encountered definitions
def findOrCreateDefinition[T](rhs: Def[T]): Sym[T]

implicit def toExp[T](d: Def[T]): Exp[T] = findOrCreateDefinition(d)
}

trait Base {
type Rep[T] // abstract
}

trait BaseExp extends Base {
type Rep[T] = Exp[T]
}

Using Rep|T]

m val x: Rep[Int]
mvaly =x+5

m "+"” is not defined on Rep[Int]!

m But we can define it to be anything
we want

Extending Rep|T]

trait IntOps extends Base {
def infix_+(x: Rep[Int], y: Rep[Int]): Rep[Int]
b

= Now if x and y are both Rep[Int], X + vy
will be translated by the compiler to:
= infix_+(X,y)

m But we still haven'’t defined the
implementation for infix_+

Extending Rep|T]

trait IntOps extends Base {
def infix_+(x: Rep[Int], y: Rep[Int]): Rep[Int]
by

trait IntOpsExp extends BaseExp {
case class IntPlus(x: Exp[Int], y: Exp[Int])
extends Def[Int]

def infix_+(x: Exp[Int], y: Exp[Int]) = IntPlus(x,y)
by

m We just built an IR node!

But how do we get these Reps?

m If we start from an existing type (Int,
List, etc.)

= We can lift those types into the Rep world
using an implicit conversion

// since we are starting with an already
// constructed instance, it is a constant at
// the time it is injected into the IR
implicit def unit(x: T) = Const(x)

But how do we get these Reps?

m If we start from a type that we made up
= We can provide a factory method to return a Rep

trait MatrixOps extends Base {
object Matrix {
def apply[T](numRows: Rep[Int], numCols: Rep[Int])
= matrix_new(numRows, numCols)

¥

def matrix_new[T](m: Rep[Int], n: Rep[Int]): Rep[Matrix[T]]
b

trait MatrixOpsExp extends BaseExp {
case class MatrixNew[T](m: Exp[Int], n: Exp[Int])
extends Def[Matrix[T]]

def matrix_new[T](m: Exp[Int], n: Exp[Int]) = MatrixNew(X,y)
b

So where are we now?

m We defined Rep[T], and one useful kind
of Rep, Exp[T], representing an IR node

m We showed how to construct instances
of Rep[T]

m We showed how to override methods on
Reps to do anything we want

s And we used this to construct an IR node
representing the operation

m Everything is well-typed!

Let’s look at an application

object MyApplication extends MatrixOps {
def main(args: Array[String]) {
val x = Matrix[Int](10,20) // Rep[Matrix[Int]]
println(x)
by
b

And run it...

error: polymorphic expression cannot be instantiated to expected type;
found : [T(in method apply)]Example1OpsExp.this.MatrixNew[T(in method

apply)]
required: ExamplelOpsExp.this.Rep[Matrix[T(in method matrix_new)]]

def matrix_new[T:Manifest](x: Exp[Int], y: Exp[Int]) = MatrixNew(X,y)

What the hell?
Debugging is painful — we're working on it

Fixing compile errors

trait MatrixOpsExp extends BaseExp {
case class MatrixNew[T](m: Exp[Int], n: Exp[Int])
extends Def[Matrix[T]]

def matrix_new[T](m: Exp[Int], n: Exp[Int]) =
MatrixNew[T](m,n)

}

Alternatively,

def matrix_new[T](m: Exp[Int], n: Exp[Int]):
Exp[Matrix[T]] = MatrixNew(m,n)

New error

error: type mismatch;

found : Int(10)

required: Examplel.Rep[Int]
val a = Matrix[Int](10,20)

= What happened?

= We forgot to include the implicit that lifts
Ints to Rep[Int]!

m Let’s try again

Try #2

object MyApplication extends MatrixOps with LiftNumeric {
def main(args: Array[String]) {
val x = Matrix[Int](10,20) // Rep[Matrix[Int]]
println(x)

¥
¥

m Almost there...

error: object creation impossible, since:

method matrix_new in trait Example1Ops of type [T](X:
Examplel.Rep[Int],y: Examplel.Rep[Int])(implicit
Svifc_:lencclze$2: Manifest[T])Examplel.Rep[Matrix[T]] is not

efine

method unit in trait Base of type [T](X: T)%implicit
evidence$2: Manifest[T])Examplel.Rep[T] is not defined

object Examplel extends Example1Ops with LiftNumeric {

MatrixOps is abstract

m It doesn’t define Rep or matrix_new
m We need to use MatrixOpsExp

object MyApplicationRunner extends MyApplication with
MatrixOpsExp {

def main(args: Array[String]) { run() }
b

trait MyApplication extends MatrixOps with LiftNumeric {
def run() {
val x = Matrix[Int](10,20) // Rep[Matrix[Int]]
println(x)
b
b

Success!

= Our tiny embedded program compiles
= What happens when we run it?

Sym(0)
Process finished with exit code 0O

m Exciting...

A slightly more complicated
example

trait MyApplication extends MatrixOps with LiftNumeric {
def run() {
val x0 = Matrix[Int](10,10) // Rep[Matrix[Int]]
val b = x0*x0*x0*x0*1
printin(b)
b
b

= We need to add Matrix*Matrix and
Matrix*Int nodes, or this will fail with a
compile error:

error: value * is not a member of
Example2.this.Rep[Example2.this.Matrix[Int]]

val b = x0*x0*x0*x0*1

Adding to MatrixOps

trait MatrixOps extends Base {
object Matrix {
def apply[T](numRows: Rep[Int], numCols: Rep[Int])
= matrix_new(numRows, humCols)

b
def infix_*[T](x: Rep[Matrix[T]], y: Rep[Matrix[T]]) = matrix_times(x,y)
def infix_*[T](x: Rep[Matrix[T]], y: Rep[Int]) = matrix_times_scalar(x,y)

def matrix_new[T](m: Rep[Int], n: Rep[Int]): Rep[Matrix[T]]

def matrix_times[T](x: Rep[Matrix[T]], y: Rep[Matrix[T]]): Rep[Matrix[T]]

def matrix_times_scalar[T](x: Rep[Matrix[T]], y: Rep[Int]): Rep[Matrix[T]]
b

trait MatrixOpsExp extends BaseExp {
case class MatrixNew[T](m: Exp[Int], n: Exp[Int]) extends Def[Matrix[T]]
case class MatrixTimes[T](x: Exp[Matrix[T]], y: Exp[Matrix[T]]) extends Def[Matrix[T]]
case class MatrixTimesScalar[T](x: Exp[Matrix[T]], y: Exp[Int]) extends Def[Matrix[T]]

def matrix_new[T](m: Exp[Int], n: Exp[Int]) = MatrixNew[T](x,y)
def matrix_times[T](x: Exp[Matrix[T]], y: Exp[Matrix[T]]) = MatrixTimes(X,y)
def matrix_times_scalar[T](x: Exp[Matrix[T]], y: Exp[Int]) = MatrixTimesScalar(x,y)

Good to go

= Hit “"compile”...
error: double definition:

method infix_*:[T](x: Example20ps.this.Rep[Example20ps.this.Matrix[T]],y:
Example20ps.this.Rep[Int])(implicit evidence$3:
Manifest[T])Example20ps.this.Rep[Example20ps.this.Matrix[T]] and

method infix_*:[T](x: Example20ps.this.Rep[Example20ps.this.Matrix[T]],y:
Example20ps.this.Rep[Example20ps.this.Matrix[T]])(implicit evidence$2:
Manifest[T])Example20ps.this.Rep[Example20ps.this.Matrix[T]] at line 10

have same type after erasure: (x: java.lang.Object,y: java.lang.Object,implicit
evidence$3: scala.reflect.Manifest)java.lang.Object

def infix_*[T:Manifest](x: Rep[Matrix[T]], y: Rep[Int]) = matrix_times_scalar(x,y)

m Generics strikes again

= Types are erased, so method signatures are
identical

Fighting type erasure

trait MatrixOps extends Base with OverloadHack {

object Matrix {

def apply[T](numRows: Rep[Int], numCols: Rep[Int])

= matrix_new(numRows, numCols)

b
def infix_*[T](x: Rep[Matrix[T]], y: Rep[Matrix[T]])(implicit o:
Overloadedl) = matrix_times(x,y)
def infix_*[T](x: Rep[Matrix[T]], y: Rep[Int])(implicit o:
Overloaded2) = matrix_times_scalar(x,y)

¥

m Seriously? “"OverloadHack"”?

= At least only the DSL authors (you guys) see it,
and not the users...

Almost no magic

trait OverloadHack {
class Overloaded1
class Overloaded?2
class Overloaded3
class Overloaded4
etc...

implicit val overloadedl = new Overloadedl
implicit val overloaded2 = new Overloaded?2
implicit val overloaded3 = new Overloaded3
implicit val overloaded4 = new Overloaded4
etc...

¥

m Force the compiler to distinguish the
method types by attaching a different
implicit parameter to each signature

Run again

Sym(4)
Process finished with exit code 0

m Still not that enlightening

= We can override println to peek under the covers
(see examples posted online), and we get:

MatrixTimesScalar(MatrixTimes(MatrixTimes(MatrixTimes(Mat
rixNew(Const(10 ,Const(10)),MatrixNew(Const(10),Consté
103)),MatrixNew Const(10),Const(10))),MatrixNew(Const
10),Const(10))),Const(1))

Process finished with exit code 0O

m This is a textual representation of our program
m -a graph in text form

Another way of looking at it

Sym(4) = MatrixTimesScalar(Sym(3),Const(1))
Sym(3) = MatrixTimes(Sym(2),Sym(0))
Sym(2) = MatrixTimes(Sym(1),Sym(0))
Sym(1) = MatrixTimes(Sym(0),Sym(0))
Sym(0) = MatrixNew(Const(10),Const(10))
Sym(0) = MatrixNew(Const(10),Const(10))
Sym(0) = MatrixNew(Const(10),Const(10))
Sym(0) = MatrixNew(Const(10),Const(10))

Process finished with exit code 0O

Another way of looking at it

m Here is another (nicer) view of the
same thing

XD*:X[)*XD*X[J*:[

1

X1 = Xp * Xp
X2 =/ Xp * X1
X3 T/ Xp ® X2

Details (1)

= How do you override operations in the
language that aren’t method calls?

mvarx =5

m X ==
= while (true) { foo() }
= if (foo) bar() else foobar()

m Turn them into methods!
m This is exactly what the scala-virtualized
compiler does
= It also adds those nice infix_ methods we’ve been
using to handle operations on Reps
= Now the dsl author can override ___equals(x:
Rep[Any], y: Rep[Any]), etc.

Details (2)

m ['ve left off Manifest implicit parameters in all the
previous examples for brevity

Manifests are objects that carry around run-time
type information

They are instantiated automatically by compiler,
and provided everywhere they are required as an
implicit parameter

We use them to keep the type information for all
the symbols we create, despite erasure

Very useful - you'll see them everywhere

So we have an IR. Now what?

m How do I optimize the IR?
= How do I generate code?

= How do we handle control
dependencies and side effects?

Optimizations

@ Common subexpression elimination
(CSE)

m Dead code elimination (DCE)
m Domain-specific pattern rewrites

m Loop hoisting & fusing (pretty
involved — we won't talk about this
now, but come ask questions if you're
interested)

CSE

m Pretty simple

m Let's take a closer look at our IR trait
(Expressions.scala)

protected implicit def toAtom[T:Manifest](d: Def[T]): Exp[T] = {
findOrCreateDefinition(d).sym

¥

def findOrCreateDefinition[T:Manifest](d: Def[T]): TP[T] =
findDefinition[T](d).getOrElse {
createDefinition(fresh[T], d)

¥

CSE

trait MatrixOpsExp extends BaseExp {

case class MatrixNew[T](m: Exp[Int], n: Exp[Int])
extends Def[Matrix[T]]

def matrix_new[T](m: Exp[Int], n: Exp[Int]) =
MatrixNew[T](X,y)

The return type of matrix_new is Exp[Matrix[T]]
but MatrixNew[T](X,y) returns a Def[Matrix[T]]

The compiler inserts the implicit toAtom conversion to
create a symbol for the Def[T] and return a Sym|[T]

= If the symbol already exists, it is reused

DCE

m We essentially get it “for free” with
our IR

m Notice that we don’t have a traditional
AST or CFG like representation

= These representations are more closely
tied to the original program

= Can be good and bad

= The good is that we are not over-
constrained: we only care about true
dependencies

DCE

m Our IR is similar to a program-
dependence graph (PDG)

m We figure out a node’s dependencies
by following links in the IR

m If there is code that the result of a
block didn't depend on, it is never
found

DCE example

def run() =<
val a = Matrix(10,10)
val b = a*10
val c = a*20
printin(c)

by

m B is dead code: it is never returned and
never printed

= When we schedule this block, we will
follow C’s dependencies and find A, but
not B

Domain-specific pattern rewriting

= A simple but powerful form of optimization
m Consider adding a MatrixPlus IR node

trait MatrixOpsExp extends BaseExp {
case class MatrixPlus[T](x: Exp[Matrix[T]], y: Exp[Matrix[T]])

extends Def[Matrix[T]]

def matrix_plus[T](x: Exp[Matrix[T]], y: Exp[Matrix[T]]) =
MatrixPlus(x,y)

¥

= Normally we just construct the node with its
arguments

m But we can use pattern matching to find special
cases

Domain-specific pattern rewriting

trait MatrixOpsExp extends BaseExp {
case class MatrixPlus[T](x: Exp[Matrix[T]], y: Exp[Matrix[T]])
extends Def[Matrix[T]]

def matrix_plus[T](x: Exp[Matrix[T]], y: Exp[Matrix[T]]) =
MatrixPlus(Xx,y)

¥

trait MatrixOpsExpOpt extends MatrixOpsExp {

override def matrix_plus[T](x: Exp[Matrix[T]], y: Exp[Matrix[T]]) =
(x,y) match {

case (MatrixZero(m,n),b) => b
case (a,MatrixZero(m,n)) => a
case _ => super.matrix_plus(x,y)
b
b

Can match on arbitrary patterns and perform
arbitrary simplifications!

Code generation

m Time to produce something we can actually
execute

m The LMS library provides a set of basic code
generation facilities

= Handles scheduling

« tracking node dependencies, coming up with a
correct program order

=« takes care of a lot of hairy details (handling nested
scopes, etc.)

m All you (the DSL author) has to do is define
code generators for your IR nodes

A simple code generator

trait Example3Codegen extends ScalaGenBase {
val IR: Example30psExp
import IR._

def emitNode(sym: Sym[Any], rhs: Def[Any])(implicit stream:
PrintWriter): Unit = rhs match {

case MatrixNew((m,n) => emitValDef(sym, "new MatrixImpl(" +
quote(m) + "," + quote(n) + ")")
case MatrixTimes(x,y) => emitValDef(sym, quote(x) + " * " +

quote(y))
case MatrixTimesScalar(x,y) => emitValDef(sym, quote(x) + " *

" + quote(y))
case _ => super.emitNode(sym, rhs)

A simple code generator, piece
by piece

trait Example3ScalaGen extends ScalaGenBase {
val IR: Example30psExp
import IR._

m IR is a path-dependent type

m The code generator traits are not part of the
same object as the IR - but they all need to
agree on the same type Rep|[T]

= Reason: code generators for different targets should be
kept separate (Scala, CUDA, C, etc.)

object Example3Runner extends Example3 with
Example30psExp

object Example3Generator extends Example3ScalaGen {
val IR = Example3Runner }

A simple code generator, piece
by piece

override def emitNode(sym: Sym[Any], rhs: Def[Any])(implicit
stream: PrintWriter): Unit = rhs match {

m GenericCodegen provides a default emitNode
implementation that should be overridden by
the generators for each node type

m GenericCodegen calls emitNode for each
node after scheduling, in the correct order

= If no-one implements it (it chains all the way back to
the base class) it will throw a runtime exception

A simple code generator, piece
by piece

case MatrixNew((m,n) => emitValDef(sym, "new MatrixImpl(" +
quote(m) + "," + quote(n) + ")")

Matching on nodes is normal Scala pattern matching

The supplied string is exactly what will get written out
in the generated file

emitValDef() is a helper function defined for each
target generator to declare a constant

qguote() is a helper function that returns a symbol’s
unique id (e.g. x13)

Later on (in the Delite lecture) we will show how the
Delite framework handles most of the code
generation duties for you

Invoking code generation

object Example3Generator extends Example3ScalaGen {
val IR = Example3Runner

»

object Example3Runner extends Example3 with
Example30psExp {

def main(args: Array[String]) {

Example3Generator.emitSource((x: Rep[Unit]) => run(),
"Application”, new PrintWriter(System.out))

»
»

Hit run... not bad!

/***

Emitting Generated Code

***/

class Application extends ((Unit)=>(Unit)) {
def apply(x0:Unit): Unit = {

val x1 = new MatrixImpl(10,10)
val x2 = x1 * x1

val x3 = x2 * x1

val x4 = x3 * x1

val x5 = x4 * 1

val x6 = println(x5)

X6

b

b

/***

End of Generated Code

***/

Process finished with exit code 0O

This code almost works..

m Except for this "MatrixImpl” thing that
doesn’t exist anywhere yet

s We don't lift data structures into the IR (yet)

m SO you generate calls to the constructor of a
concrete class that you’ve defined
somewhere

m Field accesses too..

= case MatrixXNumRows(x) => emitValDef(quote(x)
+ “.numRows")

Data structures

m Just about everything besides
construction and field access should not
be defined in the real data structure
= Instead, implement these as IR methods

= EX. MatrixApply(n) and MatrixUpdate(n,y)
generate “.apply(n)” and “.update(n,y)”

= But MatrixPlus can be implemented in terms of
MatrixNew, MatrixApply, and MatrixUpdate,
instead of being defined inside “"MatrixImpl”

= Anything that is emitted as a method call is a
blackbox in the IR, and cannot be optimized

= This will make more sense once you start
playing with the code...

One other sneaky detail

m We've been overlooking it so far, but for
Rep[Matrix[T]] to be a proper type,
there has to be a type Matrix[TY
somewhere

m If you look inside the examples, you'll
see: class Matrix[T] // placeholder

= You need to define these “Interface”
classes that contain the types that data
structures used in generated code are
expected to have

Data structure example

// Interfaces, to be used from generated code!

trait Matrix[T] {
def numRows: Int
def numCols: Int

def apply(m: Int, n: Int): T

def update(m: Int, n: Int, y: T): Unit
b

// Concrete data structure, to be used from generated code!

class MatrixXImpl[T:Manifest](val numRows: Int, val numCols: Int) extends
Matrix[T] {

val _data = new Array[T](numRows*numCaols)

def apply(m: Int, n: Int) = _data(m*numCaols + n)
def update(m: Int, n: Int, y: T) { _data(m*numCols+n) = vy }
by

Syms and friends

m For more complex IR nodes (usually those
with nested blocks), you have to help the
scheduler out

® syms is a method that finds dependencies:
the default implementation is to grab every
field in a case class

= boundsyms is used for lambdas: anything
that is a bound sym will not be (and should
not be) scheduled before the lambda, since it
is only used inside

Syms and friends (2)

m for (i <- 0 until 100) { ... }

trait BaseGenRangeOps extends GenericNestedCodegen {
val IR: RangeOpsExp
import IR._

override def syms(e: Any): List[Sym[Any]] = e match {
case RangeForeach(start, end, i, body) =>
syms(start):::syms(end):::syms(body)
case _ => super.syms(e)

¥

override def boundSyms(e: Any): List[Sym[Any]] = e match {
case RangeForeach(start, end, i, y) => i :: effectSyms(y)
case _ => super.boundSyms(e)

¥
¥

= What would happen if we left these out?

We’'re almost there...

m Just one small problem left to deal
with

Side effects

= ..which happens to be an amazing
can of worms

Control dependencies and effects

m Side effects introduce a new set of
ordering constraints on the IR

m They are very problematic in general

= If A may be an alias for B, then every
write to A must be treated as if it were
also a write to B

= Unless you can prove uniqueness, almost
everything becomes serialized

= Optimizations like code motion (op fusing,
etc.) become impossible to apply

Restricting effects

m LMS takes a pragmatic, DSL-focused approach:
= Let’s not try to deal with arbitrary effects

= But effects are still very useful, so we don’t want to be
fundamentalist

s Restrict rather than disallow

m Rules

= All symbols that might be mutated must be explicitly
marked mutable by the DSL author

= Nested mutable objects are not allowed
« var x = vy if y is mutable

« val v = Vector(Vector(1,2,3,4)) if both vectors are
mutable

= Mutable objects cannot alias
« a(i) = b if both a and b are mutable
=« (note that a(i) = b.clone is fine)

Tracking effects

m The DSL author is responsible for
marking effectful operations

m LMS provides an API for doing so
= reflectMutable // marks a symbol as mutable

= reflectWrite // marks a write to a mutable
symbol (if the symbol is not mutable, will print
an error!)

s reflectEffect // marks a general side-effect
(e.g. println). All effects are totally ordered!

Effects example

trait Example40OpsExp extends Example40ps with EffectExp {

by

case class MatrixNew|[T:Manifest](x: Exp[Int], y: Exp[Int]) extends
Def[Matrix[T]]

case class MatrixApply[T:Manifest](x: Exp[Matrix[T]], m: Exp[Int], n:
Exp[Int]) extends Def[T]

case class MatrixUpdate[T:Manifest]%x: Exp[Matrix[T]], m: Exp[Int],
n: Exp[Int], y: Exp[T]) extends Def[Unit

case class MatrixPrint[T:Manifest](x: Exp[Matrix[T]]) extends
Def[Unit]

def matrix_new[T:Manifest](x: Exp[Int], y: Exp[Int]) =
reflectMutable(MatrixNew[T](x,yg))

def matrix_apply[T:Manifest](x: Exp[Matrix[T]], m: Exp[Int], n:
Exp[Int]) = MatrixApply(x,m,n)
def matrix_update[T:Manifest](x: Exngatrix[T]], m: Exp[Int%, n:

Exp[Int], y: Exp[T]) = reflectWrite(x)(MatrixUpdate(x,m,n,y
def matrix_print[T:Manifest](x: Exp[Matrix[T]]) =
reflectEffect(MatrixPrint(x)

)

That’s it

m Look for the examples in the slides
online

m Good luck on your projects!

m Questions?

LANGUAGE VIRTUALIZATION

Onward! '10: Language Virtualization for
Heterogeneous Parallel Computing

(see class website)

Language Virtualization

® A host language is virtualizable if it
allows the implementation of
embedded DSLs that are virtually
indistinguishable from a stand-alone
language

m Most of the power of a standalone
language, with much less work

Embedding Language Requirements

Expressiveness

e Encompasses syntax, semantics and general ease of use for domain
experts

Performance

e Embedded language must me amenable to extensive static and
dynamic analysis, optimization and code generation

Safety

e Preserve type safety of embedded language
e Optimizations can be applied safely

Modest Effort

e Virtualization is only useful if it reduces effort to embed high

erformance DSL

Expressiveness

= OOP allowed higher level of abstractions
= Add your own types and define operations on them
= But how about custom type interaction with language features

= Overload all relevant embedding language constructs

for (x <- elems if x % 2 == 0) p(x)

maps to

elems.withFilter(x => x % 2 == 0).foreach(x => p(x))

= DSL developer can control how loops over domain
collection should be represented and executed by
implementing withFilter and foreach for their DSL

type

Expressiveness

= Need to apply similar techniques to all other
relevant constructs of the embedding language
(for example)

if (cond) something else somethingElse

maps to
__ifThenElse(cond, something, somethingElse)

m DSL developer can control the meaning of
conditionals by providing overloaded variants
specialized to DSL types

Performance

m Requires the ability to support
optimization and code generation in
embedded DSLs

= Implies that embedded programs must be
available in some lifted intermediate
representation

= Customizing IR allows for domain-specific
optimization and heterogeneous code

generation - =
@ /@\ ZVIDIA

CUDA

.

Safety

= Typed DSL should be embedded in a typed
embedding language

= Plain AST-like representations would allow DSL
program to get access to part of their own structure
which in addition to being unsafe, can render
optimizations unsound

t]) = {

iva1y=x+1
if (y.isInstanceOf[Plus])

doNothing
else PRIVATE IR

killKittens KEEP OUT

}

Invoking foo(2) allows us to optimize program and
calculate y during compile time

= Unsound if program can access the DSL’s AST

Modest Effort

m Lifting each new DSL that uses slightly
different IR violates Effort criterion

= Need a DSL embedding infrastructure

= Provide building blocks of common DSL
functionality

= IR, analysis, optimizations, code generation

