
Journal of Computer and System Sciences 71 (2005) 291–307
www.elsevier.com/locate/jcss

Efficient algorithms for online decision problems�

Adam Kalaia,∗, Santosh Vempalab

aDepartment of Computer Science, Toyota Technological Institute, 1427 E. 60th St., Chicago, IL 60637, USA
bMassachusetts Institute of Technology, MA, USA

Received 20 February 2004; received in revised form 1 October 2004

Available online 20 December 2004

Abstract

In an online decision problem, one makes a sequence of decisions without knowledge of the future. Each period,
one pays a cost based on the decision and observed state. We give a simple approach for doing nearly as well as the
best single decision, where the best is chosen with the benefit of hindsight. A natural idea is to follow the leader,
i.e. each period choose the decision which has done best so far. We show that by slightly perturbing the totals and
then choosing the best decision, the expected performance is nearly as good as the best decision in hindsight. Our
approach, which is very much like Hannan’s original game-theoretic approach from the 1950s, yields guarantees
competitive with the more modern exponential weighting algorithms like Weighted Majority.
More importantly, these follow-the-leader style algorithms extend naturally to a large class of structured online

problems for which the exponential algorithms are inefficient.
© 2004 Elsevier Inc. All rights reserved.

Keywords:Online algorithms; Hannan’s algorithm; Optimization; Decision theory

1. Introduction

In an online decision problem, one has to make a sequence of decisions without knowledge of the
future. One version of this problem is the case withn experts (corresponding to decisions). Each period,
we pick one expert and then observe thecost∈ [0,1] for each expert. Our cost is that of the chosen expert.

�An extended abstract of this paper appeared at COLT 2003 [16].∗ Corresponding author.
E-mail addresses:kalai@tti-c.org(A. Kalai)
URLs:http://people.cs.uchicago.edu/∼kalai, http://www-math.mit.edu/∼vempala.

0022-0000/$ - see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcss.2004.10.016

http://www.elsevier.com/locate/jcss
mailto:kalai@tti-c.org
http://people.cs.uchicago.edu/~kalai
http://www-math.mit.edu/~vempala

292 A. Kalai, S. Vempala / Journal of Computer and System Sciences 71 (2005) 291–307

Our goal is to ensure that our total cost is not much larger than the minimum total cost of any expert.
This is a version of thepredicting from expert adviceproblem.1 Exponential weighting schemes for this
problem have been discovered and rediscovered in many areas[12]. Even in learning, there are too many
results to mention (for a survey, see[4]).
The following different approach can also be used. We add a random perturbation to the total cost so

far of each experte each period, and then choose the expert of minimal cost.

• Follow the perturbed leading expert: On each periodt = 1,2, . . . ,
1. For each experte ∈ {1,2, . . . , n}, pickpt [e]�0 from exp. distributiond�(x) = �e−�x .
2. Choose expert with minimalct [e] − pt [e], wherect [e] = total cost of experteso far.

The above algorithm is quite similar to Hannan’s original algorithm2 [14] (which gave additive bounds).
Following the perturbed leader gives small regret relative to the best expert,

E[cost]�(1+ �)(min cost in hindsight) + O(log n)

�
. (1)

While thealgorithmandguaranteesaresimilar to randomizedversionsofWeightedMajority, thealgorithm
can be efficiently generalized to a large class of problems. This problem is discussed in more detail in
Section2.
Next consider the more structured problem ofonline shortest paths[28], where one has a directed

graph and a fixed pair of nodes(s, t). Each period, one has to pick a path froms to t, and then the times
on all the edges are revealed. The per-period cost is the sum of the times on the edges of the chosen path.
With bounded times, one can ignore the structure in this problem and view it as an expert problem

where each path is an independent expert. While the number of paths may be exponential in the size of
the graph, the above bound only depends logarithmically on the number of experts. However, the runtime
of an experts algorithm for this problem would be exponential in the size of the problem.
As is common for such problems with nice structure, a clever and efficient algorithm has been designed

for this problem[28]. Their approach was to mimic the distribution over paths that would be chosen by
the exponential algorithm, but with efficient implicit calculations. Similar algorithms have been designed
for several other problems[15,28,27,11,6].
Surprisingly, the natural generalization of following the perturbed leading expert can be applied to all

these problems and more, efficiently. In the case of shortest paths,

• Follow the perturbed leading path: On each periodt = 1,2, . . . ,
1. For each edgee, pick pt [e] randomly from an exponential distribution. (See FPL* in the next

section for exact parameters.)
2. Use the shortest path in the graph with weightsct [e] + pt [e] on edgee, wherect [e] = total time

on edgeeso far.

As a corollary of Theorem1.1, withmedges andn nodes

E[t ime]�(1+ �)(best time in hindsight)+ O(mn logn)

�
.

1A small difference is that we are required to pick a single expert, rather than a weighting on experts.
2We are grateful to Sergiu Hart for the pointer to Hannan’s algorithm.

A. Kalai, S. Vempala / Journal of Computer and System Sciences 71 (2005) 291–307 293

As is standard, “best time in hindsight’’ refers to the minimum total time spent, if one had to use the
same path each period, and we are assuming all edge times are between 0 and 1. This is similar to the
aforementioned bounds of Takimoto andWarmuth[28].
Before discussing further applications, we describe the general model and theorems that are proven.

1.1. Linear generalization and results

We consider a linear generalization in which we, the decision maker, must make a series of decisions
d1, d2, . . . , each from a possibly infinite setD ⊂ Rn. After thetth decisiondt is made, we observe the
statest ∈ S ⊂ Rn. There is a cost ofd · s for making decisiond in states, so our cost is

∑
dt · st .

The expert problem can be mapped into this setting as follows:n is the number of experts, the state
each period is the observed vector of costs, and choosing experti corresponds to the decision vectord
with a 1 inpositioni and 0 everywhere else.
For the path problem,n is now the number of edges, the state each period is the vector of observed

costs (one per edge), and a decision to take a path corresponds to a{0,1}-vector with 1’s in the positions
of edges that are on the path.
Thus, our goal is to have a total cost

∑
dt · st not far from mind∈D

∑
d · st , the cost of the best offline

decision, if one had to choose a single decision in hindsight. (It is impossible, in general, to be competitive
with the best dynamic strategy that may change decisions each period. Such a comparison leads to large
regret.) LetM be a function that computes the best single decision in hindsight, argmind∈D

∑
d · st .

Because costs are additive, it suffices to considerM as a function of total state vectors,M : Rn → D,
M(s) = argmind∈D d · s.

In the case of experts,M simply finds an expert of minimum cost given the total cost vectors so far. In the
case of paths,M finds the shortest path in the graph with weights which are the total times on each edge.
(Note, for ease of analysis, we are not distinguishing between actual decisions, i.e. experts or paths, and
their representation inRn.)
We will give several more examples that can be mapped into this linear model. On the surface, it

resembles a convex optimization problem, however, instead of requiringD to be convex, we only assume
that the optimizerM can be computed efficiently.3

Given such a linear problem of dimensionn, and given a black-box algorithm for computingM, we
can give an online algorithm whose cost is near the minimum offline cost,

min-costT = min
d∈D

T∑
1

d · st = M(s1 + s2 + · · · + sT) · (s1 + s2 + · · · + sT).

The additive and multiplicative versions of Follow the Perturbed Leader (FPL) are as follows.

• FPL(�): On each periodt,
1. Choosept uniformly at random from the cube

[
0, 1

�

]n
.

2. UseM(s1 + . . . + st−1 + pt).

3 This is not a restrictive assumption because efficient(1+�) online computation implies efficient(1+�) offline approximation
ofM by standard techniques[21]. What we show is the converse: how to use efficient offline algorithms for the online problem.

294 A. Kalai, S. Vempala / Journal of Computer and System Sciences 71 (2005) 291–307

• FPL* (�): On each periodt,
1. Choosept at randomaccording to the densityd�(x) ∝ e−�|x|1. (Independently for each coordinate,

choose±(r/�) for r from a standard exponential distribution.)
2. UseM(s1 + . . . + st−1 + pt).

Motivation for these algorithms can be seen in a simple two-expert example. Suppose the cost se-
quence was(0, 1

2) followed by alternating costs of(1,0) and(0,1). Then, following the leader (without
perturbations) always incurs a cost of 1, while each expert incurs a cost of aboutt/2 overt periods. With
n experts, the situation is even worse—anydeterministic algorithm can be forced to have a cost oft over
t periods (each time only the selected expert incurs a cost of 1) while the best expert has a cost of at most
t/n. By adding perturbations, the algorithm becomes less predictable, one the one hand. On the other
hand, it takes longer to adapt to a setting where one expert is clearly better than others. This tradeoff is
captured by the following theorem, stated in terms of the following parameters.4 Here theL1 norm of a
vectorx ∈ Rn is |x|1 = ∑n

1 |xi |.
(diameter)D � |d − d ′|1, for all d, d ′ ∈ D,

R � |d · s|, for all d ∈ D, s ∈ S,
A � |s|1, for all s ∈ S.

Theorem 1.1. Let s1, s2, . . . , sT ∈ S be a state sequence. (a) Running FPL with parameter��1 gives,

E[costof FPL(�)]�min-costT + �RAT + D

�
,

(b) For nonnegativeD,S ⊂ Rn+, FPL* gives,

E[costof FPL ∗ (�/2A)]�(1+ �)min-costT + 4AD(1+ ln n)

�
.

Of course, it makes sense to state the bounds in terms of the minimizing values of�, as long asT or
min-costT are known in advance, giving

E[cost of FPL(√D/RAT)] � min-costT + 2
√
DRAT ,

E[cost of FPL*(�1)] � min-costT + 4
√
(min-costT)AD(1+ ln n) + 4AD(1+ ln n),

where�1 = min(1/2A,
√
D(1+ ln n)/A(min-costT)). Even if they are not known in advance, simple

�-halving tricks can be used to get nearly the same guarantees.

1.2. Further applications and algorithms

For thetree update problem, it seems complicated to efficiently implement the weighted majority style
algorithms, and no efficient(1 + �)-algorithms were known. This problem is a classic online problem
[26] introduced by Sleator and Tarjan with Splay Trees, around the same time as they introduced the
list update problem[25]. In the tree update problem, one maintains a binary search tree overn items in

4Note that the parameters need only hold for “reasonable” decisions that an optimal offline decision might actually make,
e.g.D� |M(s) − M(s′)|1∀s, s′ would suffice (we do not need to consider the cost of paths that visit a node twice).

A. Kalai, S. Vempala / Journal of Computer and System Sciences 71 (2005) 291–307 295

the face of an unknown sequence of accesses to these items. For each access, i.e. lookup, the cost is the
number of comparisons necessary to find the item, which is equal to its depth in the tree.
One could use FPL for this problem as well. This would maintain frequency counts for each item in

the tree, and then before each access it would find the best tree given these frequencies plus perturbations
(which can be computed inO(n2) time using dynamic programming). But doing so much computation
and so many tree rotations, just to prepare for a lookup, would be taking the online analysis model to an
absurd extreme. Instead, we give a way to achieve the same effect with little computation and few updates
to the tree:

• Follow the lazy leading tree (N):
1. For 1�i�n, let si := 0 and choosevi randomly from{1,2, . . . , N}.
2. Start with the best tree as if there werevi accesses to nodei.
3. After each access, seta to be the accessed item, and:
(a) sa := sa + 1.
(b) If sa�va then

i. va := va + N .
ii. Change trees to the best tree as if there werevi accesses to nodei.

OverTaccesses, forN = √
T/n, one gets the followingstaticbounds5 as a corollary of Lemma1.2and

Theorem1.1,

E[cost of lazy trees]�(cost of best tree)+ 2n
√
nT .

Because any algorithm must pay at least 1 per acccess, the above additive regret bound is even stronger
than a multiplicative(1+ �)-competitive bound, i.e.T �(cost of best tree). In contrast, Splay Trees have
a guarantee of 3 log2 3× (cost of best tree) plus an additive term, but they have other desirable properties.
This algorithm has what Blum et. al. callstrong static optimality[6]. For the simplerlist update problem,
they presented both implicit exponential and follow the perturbed leader types of algorithms. Theirs was
the original motivation for our work, and they were also unaware of the similarity to Hannan’s algorithm.
The key point here is that step (ii) is executed with probability at most 1/N , so one expects to update

only
√
nT times overT accesses. Thus the computational costs and movement costs, which he have

thus far ignored, are small. Corresponding to FPL and FPL*, which call the black-boxM once each
period, we give general lazy algorithms Follow the Lazy Leader, FLL and FLL*, that have exactly the
same performance guarantees, but only call the black box with probability�A each period, and thus are
extremely efficient. Since�T is typicallyO(

√
T) (ignoringn), this means that on a sequence of lengthT

we only need to doO(
√
T) updates. This is especially important if there is amovement costto change

trees.6 In our case, this cost becomes negligible. The slight disadvantage of the lazy algorithms is that
they only work against an adversary that is oblivious to their random choices.

Lemma 1.2. For any fixedsequenceof statess1, s2, . . .,FPL(�)andFLL(�) (alsoFPL*andFLL*)have
identical expectations on each period t. However, the probability ofFLL(�) (or FLL ∗ (�)) performing
an update is at most�A.

5We do not give dynamic guarantees and our results do not apply to the dynamic optimality conjecture[26].
6 Similar issues have been addressed in the exponential algorithm literature, however without regard to efficiency.

296 A. Kalai, S. Vempala / Journal of Computer and System Sciences 71 (2005) 291–307

TheAdaptiveHuffman codingproblem[19] is not normally considered as an online algorithm.But it fits
naturally into the framework. There, one wants to choose a prefix tree for each symbol in a message, “on
the fly” without knowledge of the sequence of symbols in advance. The cost is the length of the encoding
of the symbol, i.e. again its depth in the tree. Adaptive Huffman coding is exactly the follow-the-leader
algorithm applied to this problem. For a compression problem, however, it is natural to be concerned
about sequences of alternating 0s and 1s. Adaptive Huffman coding does not give(1+ �) guarantees. If
the encoder and decoder have a shared random (or pseudorandom) sequence, then they can apply FPL or
FLL as well. The details are similar to the tree update problem.
Efficient (1+ �) algorithms have been designed foronline pruningof decision trees, decision graphs,

and their variants[15,27]. Not surprisingly, FPL* and FLL* will apply.

1.2.1. Online approximation algorithms
An interesting case that does not fit ourmodel is the set of problemswhere no known efficient algorithm

for offline optimality exists. In these cases, we cannot hope to get online(1+�) optimality, but it is natural
to hope that an efficient�-approximation algorithm could be turned into an efficient online(1 + �)�-
competitive algorithm. In general, all we can show is a(1+ �)�T -competitive algorithm, which is only
interesting for� close to 1 (which can be found for many problems such as Euclidean Traveling Salesman
Problem[1]).
A sample problem would be anonline max-cutproblem: we have a multigraph and we must choose

a cut. The score of a cut is the number of edges crossing the cut (we refer to score instead of cost for
maximization problems). In the online version of this linear maximization problem,7 one edge is added
at a time.Without knowledge of the next edge, we must choose a cut, and receive a score of 1 if the edge
crosses the cut and 0 otherwise.
In Section5, we show that our algorithm can be used with approximation algorithms with a certain

property, which we callpointwise approximate. Some examples include the max-cut algorithm of[13]
and the classification algorithm of[18].
A general conversion from offline approximation algorithms to online approximation algorithmswould

be very interesting.

1.2.2. Online linear optimization
The focus of earlier work[16] was the general problem of online linear optimization. Independently,

Zinkevich has introduced an elegant deterministic algorithm for themore general online convex optimiza-
tion problem[31]. His algorithm is well-suited for convex problems but not for the discrete problems
which we focus on here. A natural extension of FPL to a convex setD would be Follow the Expected
Leader (FEL):

• FEL (�,m): On each periodt,
1. Choosep1

t , p
2
t , . . . , p

m
t independently and uniformly at random from the cube

[
0, 1

�

]n
.

2. Use 1
m

∑m
i=1 M(s1 + · · · + st−1 + pi

t).

7 To view max-cut as a linear optimization problem, consider a coordinate for each pair of vertices(u, v) . The objective
vectorc at each coordinate is the number of edges betweenu andv, and a cut is represented by a{0,1} vector with 1s in the
coordinates whereu andv are on different sides.

A. Kalai, S. Vempala / Journal of Computer and System Sciences 71 (2005) 291–307 297

For this algorithm, we are assuming that the set of possible decisions is convex so that we may take the
average of several decisions. In this case, the expected guarantees can be converted into high-probability
guarantees. Formulated another way, FEL applies to the following problem.
Online linear optimization:Given a feasible convex setD ⊂ Rn, and a sequence of objective vectors

s1, s2, . . . ∈ Rn, choose a sequence of pointsd1, d2, . . . ∈ D that minimizes
∑T

t=1 dt · st .When choosing
dt , only s1, s2, . . . st−1 are known.
A typical example of such a problem would be a factory that is able to produce a variety of objects

(such as chairs and tables), with a convex set of feasible production vectors. Each period, we must decide
on how many of each object to produce, and afterwards we are informed of the profit vector. Our goal is
to have profit nearly as large as the profit of the best single production vector, if we had to use the same
production vector each period.
By linearity of expectation, the expected performance of FEL is equal to the expected performance of

FPL. However, asmgets larger, the algorithm becomes more and more deterministic, and the expected
guarantees can be converted to high-probability guarantees that hold with larger and larger probabilities.
We refer the reader to[16,31] for a more in-depth study of this problem.

2. Experts problem

We would like to apply our algorithm to the predicting from expert advice problem, where one has to
choose a particular expert each period. Here, it would seem thatD = 1 andA = n. This is unfortunate
because we needA = 1 to get the standard bounds. For the multiplicative case, we can fix this problem
by observing that the worst case for our algorithm (and in fact most algorithms) is when each period
only one expert incurs cost.8 Thus we may as well imagine thatA = 1, and we get the standard
(1+ �) × (best expert)+ O(logn/�) bounds of Weighted Majority.
To get slightly better bounds, andmore importantly, better intuition, one can use the following analysis

approach.This is analternative analysis that applies tomanyproblems, but doesnot have the full generality
of the approach used in the remainder of the paper. First, imagine the algorithm with no perturbations,
i.e. p1 = p2 = · · · = 0. We can bound its performance in terms of the cost of the best expert, i.e. the
leader at the end, and the number of times the leader (so far) changed during the execution:

cost of following the leader�cost of final leader+ # times leader changed. (2)

To see this, note that each time the leader does not change, that means that the cost we incur is the
same as the amount min-cost increases by. Each time the leader does change, our cost can increase by at
most 1.
Let us now return to the case with perturbations. Without loss of generality, we assume that the

perturbations from period to period are the same, i.e.p1 = p2 = · · · = pt . From linearity of expectation,
this will not change our expected performance. Equivalently, we pretend that rather than perturbations,
we have a period 0 with cost vector−p1. Now, when we refer to the leader, we are including the pretend

8 Imagine comparing two scenarios, one with one periods1 = (a, b) and the second with two periodss1 = (a,0) and
s2 = (0, b) It is not difficult to see that our cost in the second scenario is larger, because we have more weight on the second
expert after the first period. Nevertheless, the cost of the best expert in both scenarios is the same.

298 A. Kalai, S. Vempala / Journal of Computer and System Sciences 71 (2005) 291–307

period 0 perturbations. We argue that the leader changes infrequently. In particular,

Ep1[# changes of leader]��Ep1[cost of FPL]. (3)

To see this, fix a particular period. Experti is the leader if and only if the perturbationp1[i] of experti is
sufficiently large. In particular,i is the leader iffp1[i]�v for some valuev, which depends on the total
cost of the experts and the perturbations of the other experts.Whateverv is, we can bound the probability
thati remains leader. Ifi incurs costc, theni certainly remains leader ifp1[i] > v+c, because this means
i was already a leader by more thanc.
The exponential density from whichp1[i] is chosen, namely�e−�x , has the following property:

P [p1[i] > v + c
∣∣ p1[i]�v] =

∫ ∞
v+c

�e−�xdx∫ ∞
v

�e−�xdx

= e−�c

� 1− �c.

In other words, given that experti is leader, the probability it does not remail leader is at most�c. On
the other hand, given that experti is leader, the cost isc. Therefore, the probability of changing leader
is at most� times the expected cost. Summing over periods establishes (3). Applying (2) to the modified
sequence, and using (3) gives:

E[cost of FPL]�cost of final leader+ �(cost of FPL).

However, the cost of the final leader is not exactly the same as the cost of the best expert, because we
have added perturbations. This makes sense, because there must be a cost to adding perturbations. Say
the truly best expert was expertb. Like any fixed expert, it has expected perturbationE[[p1[b]] = 1/�.
Say the final leader is expertj. Then

cost of final leader�min-costT + p1[j] − p1[b].
In other wordsp1[j] − p1[b] is an upper-bound on how much we could have deceived ourselves. But
E[p1[j]]�E [maxi p1[i]] �(1+ ln n)/�. In a moment, we will argue this last inequality. But, taking it
for granted, this gives a final bound of

E[cost of FPL](1− �)�min-costT + ln n

�
.

These bounds are comparable, and in the worst case, only slightly larger by a constant in front of lnn

term than the bounds for randomized weighted majority.
More importantly, the analysis also offers one explanation of the source of the tradeoff between the

(1+ �) and 1/� terms. The more initial randomness, the less likely any sequence is to make us switch
(less predictable). However, the more randomness we add, the more we are deceiving ourselves.
Another interesting point that comes from this analysis is the use of fresh randomness each period. In

terms of expectation, for any fixed cost sequence, it does not matter whether we use fresh randomness
or not. However, if we did not use fresh randomess, i.e.p1 = p2 = · · ·, anadaptiveadversary that can
choose cost vectors based on our previous decisions (but not on our private coin flips) could figure out
what our perturbationsp1 were and give us large regret. Rerandomizing each period makes our algorithm
have low regret against adaptive adversaries as well.

A. Kalai, S. Vempala / Journal of Computer and System Sciences 71 (2005) 291–307 299

Finally, it remains to show that the expected maximum perturbation is at most(1+ logn)/�. To see
this, note by scaling that it is 1/� times the expected maximum ofn standard exponential distributions
with mean 1. Note that the expectation of a nonnegative random variableX isE[X] = ∫ ∞

0 Pr[X�x] dx.
Considerx1, x2, . . . , xn, each drawn independently from the standard exponential distributione−x . The
expected maximum is∫ ∞

0
Pr[max(x1, . . . , xn)�x] dx �

∫ ln n

0
Pr[max(x1, . . . , xn)�x] dx +

∫ ∞

ln n

ne−x dx.

� ln(n) + 1.

This implies that for scaled exponential distributions, the expected maximum is at most(1+ ln n)/�.

3. Additive analysis

We first analyze FPL, proving Theorem1.1 (a). Hindsight gives us an analysis that is vastly simpler
than Hannan’s. For succinctness, we use the notational shortcut

s1:t = s1 + s2 + · · · + st .

We will now bound the expected cost of FPL on any particular sequence of states.
The idea is to first analyze a version of the algorithm where we useM(s1:t) on periodt (instead of

M(s1:t−1)). Of course, this is only a hypothetical algorithm since we do not knowst in advance. But, as
we show, this “be the leader” algorithm has no regret. The point of adding randomness is that it makes
following the leader not that different than being the leader. The more randomness we add, the closer
they are (and the smaller the�RAT term). However, there is a cost to adding randomness. Namely, a
large amount of randomness may make a worse choice seem better. This accounts for theD/� term. The
analysis is relatively straightforward.
First, we see by induction onT that usingM(s1:t) on dayt gives 0 regret,

T∑
t=1

M(s1:t) · st �M(s1:T) · s1:T . (4)

ForT = 1, it is trivial. For the induction step fromT to T + 1,

T+1∑
t=1

M(s1:t) · st � M(s1:T) · s1:T + M(s1:T+1) · sT+1

� M(s1:T+1) · s1:T + M(s1:T+1) · sT+1

= M(s1:T+1) · s1:T+1.

Eq. (4) shows that if one usedM(s1:t) on periodt, one would have no regret. Essentially, this means
that the hypothetical “be the leader” algorithm would have no regret. Now consider adding perturbations.
We first show that perturbations do not hurt too much.

300 A. Kalai, S. Vempala / Journal of Computer and System Sciences 71 (2005) 291–307

Lemma 3.1. Foranystatesequences1, s2, . . .,anyT > 0,andanyvectorsp0 = 0,p1, p2, . . . , pT ∈ Rn,

T∑
t=1

M(s1:t + pt) · st �M(s1:T) · s1:T + D

T∑
t=1

|pt − pt−1|∞.

Proof. Pretend the cost vectorst on periodt was actuallyst +pt −pt−1. Then the cumulatives1:t would
actually bes1:t + pt , by telescoping. Making these substitutions in (4) gives

T∑
t=1

M(s1:t + pt) · (st + pt − pt−1) � M(s1:T + pT) · (s1:T + pT)

� M(s1:T) · (s1:T + pT)

= M(s1:T) · s1:T +
T∑
t=1

M(s1:T) · (pt − pt−1).

T∑
t=1

M(s1:t + pt) · st � M(s1:T) · s1:T +
T∑
t=1

(M(s1:T) − M(s1:t + pt))

· (pt − pt−1)

Recall thatD� |d − d ′|1 for any decision vectorsd, d ′. Also note thatu · v� |u|1|v|∞. �

Proof of Theorem 1.1. (a) In terms of expected performance, it wouldn’t matter whether we chose
a newpt each day or whetherpt = p1 for all t > 1. Applying Lemma3.1 to the latter scenario
gives,

T∑
t=1

M(st + p1) · st � M(s1:T) · s1:T + D|p1|∞ � M(s1:T) · s1:T + D

�
. (5)

Thus, it just remains to show that the expected difference between usingM(s1:t−1 + pt) instead of
M(s1:t + pt) on each periodt is at most�AR.
Key idea:we notice that thedistributionsovers1:t−1+pt ands1:t +pt are similar. In particular, they are

both distributions over cubes. If the cubes were identical, i.e.s1:t−1 = s1:t , thenE[M(s1:t−1+pt) · st] =
E[M(s1:t + pt) · st]. If they overlap on a fractionf of their volume, then we could say,

E[M(s1:t−1 + pt) · st]�E[M(s1:t + pt) · st] + (1− f)R

This is because on the fraction that they overlap, the expectation is identical, and on the fraction that
they do not overlap, one can only beR larger, by the definition ofR. By Lemma3.2following this proof,
1− f ��|st |1��A. �

Lemma 3.2. For anyv ∈ Rn, the cubes
[
0, 1

�

]n
andv+ [

0, 1
�

]n
overlap in at least a(1− �|v|1) fraction.

A. Kalai, S. Vempala / Journal of Computer and System Sciences 71 (2005) 291–307 301

Proof. Take a random pointx ∈ [
0, 1

�

]n
. If x /∈ v + [

0, 1
�

]n
, then for somei, xi /∈ vi + [0, 1

�], which
happens with probability at most�|vi | for any particulari. By the union bound, we are done.�

If we knowT in advance, it makes sense to use a setting of� which minimizes the guarantees from
Theorem1.1. As mentioned, we can get bounds nearly as good, without such knowledge, by standard�-
halving techniques.Alternatively,wecan followHannan’s leadandusegradually increasingperturbations:

• Hannan(�): On each periodt,

1. Choosept uniformly at random from the cube
[
0,

√
t

�

]n
.

2. UseM(s1:t−1 + pt).

Using a similar argument, it is straightforward to show:

Theorem 3.3. For any state sequences1, s2, . . . , after any number of periodsT > 0,

E[costofHannan(�)]�M(s1:T) · s1:T + 2�RA
√
T + D

√
T

�
.

Proof. WLOG we may choosept = (
√
t)p1 because

pt√
t
is identically distributed, for allt, and we are

only bounding the expectation. Applying Lemma3.1to this scenario gives,

T∑
t=1

M(s1:t + √
tp1) · st �M(s1:T) · s1:T + D|p1|∞

T∑
t=1

(
√
t − √

t − 1).

The last term is at mostD(1/�)
√
T .

Now,M(s1:t−1 +pt) andM(s1:t +pt) are distributions over cubes of side
√
t/�. By Lemma3.2, they

overlap in a fraction that is at least 1− |st |1�/√t�1 − A�/
√
t . On this fraction, their expectation is

identical so,

E[(M(s1:t−1 + pt) − M(s1:t + pt)) · st]� �RA√
t
.

Thus we have shown,

E

[
T∑
t=1

M(s1:t−1 + pt) · st
]

�M(s1:T) · s1:T + D
√
T

�
+

T∑
t=1

�RA√
t
.

Finally, straightforward induction shows
∑T

t=1
1√
t
�2

√
T . �

3.1. Follow the lazy leader

Here, we introduce an algorithm called Follow the Lazy Leader or FLL, with the following properties:

• FLL is equivalent to FPL in terms of expected cost.
• FLL rarely calls the oracleM.
• FLL rarely changes decision from one period to the next.

302 A. Kalai, S. Vempala / Journal of Computer and System Sciences 71 (2005) 291–307

gt−1

s1:t−1

Fig. 1. The perturbed points1:t−1 + pt is uniformly random over a cube of side 1/� with vertex ats1:t−1. One way to do this
is to choose a random grid of spacing 1/� and take the unique grid point in this cube. By using the same grid each period, the
selected point moves rarely (for sufficiently large 1/�).

If calling the oracle is a computationally expensive operation or if there is a cost to switching between
different decisions, then this is a desirable property. For example, to find the best binary search tree in
hindsight onn items takes timeO(n2), and it would be ridiculous to do this between every access to the
tree.
The trick is to take advantage of the fact that we can correlate our perturbations from one period to the

next—this will not change the expected totals. We will choose the perturbations so thats1:t−1 + pt =
s1:t + pt+1 as often as possible, as shown in Fig.1. When this is the case, we do not need to call
M(s1:t + pt+1) as we will get the same result.

• FLL (�):
1. Once, at the beginning, choosep ∈ [

0, 1
�

]n
uniformly, determining a gridG = {p + 1

� z|z ∈ Zn}.
2. On periodt, useM(gt−1), wheregt−1 is the unique point inG ∩ (

s1:t−1 + [0, 1
�)

n
)
. (Clearly if

gt = gt−1, then there is no need to re-evaluateM(gt) = M(gt−1).)

It is not difficult to see that the pointgt−1 is uniformly distributed overs1:t−1+[0, 1
�)

n, like FPL. Thus,
in expectation, FPL(�) and FLL(�) behave identically on any single period, for any fixed sequence of
states. Furthermore, since oftengt−1 = gt , rarely does a decision need to be changed or even computed.
To be more formal:

Proof of Lemma 1.2 (FLL case). FLL(�) chooses a uniformly random grid of spacing 1/�. There will
be exactly one grid point insidest−1 + [0, 1

�)
n, and by symmetry, it is uniformly distributed over

A. Kalai, S. Vempala / Journal of Computer and System Sciences 71 (2005) 291–307 303

that set. Thus we see that the grid pointgt−1 will be distributed exactly like FPL(�), uniform over
s1:t−1 + [

0, 1
�

]n
.

Now,gt−1 �= gt iff the grid point ins1:t−1 + [
0, 1

�

]n
, which we know is uniform over this set, is not in

s1:t + [
0, 1

�

]n
. By Lemma3.2, we know this happens with probability at most�|st |1. �

4. Competitive analysis

The competitive theorems are similar. The restriction we make is that decision and state vectors are
non-negative, i.e.D,S ⊂ Rn+.

Proof of Theorem 1.1. (b) WLOG, we may assumept = p1 for all t > 1, because this does not change
the expectation. As before, by Lemma3.1,

T∑
t=1

M(s1:t + p1) · st �M(s1:T) · s1:T + D|p1|∞.

At the end of Section2, it was shown that the expected maximum ofn exponential distributions with
mean� is at most(1+ ln n)/�, i.e. |p1|∞�(1+ ln n)/�. Furthermore, we claim that

E[M(s1:t−1 + p1) · st]�e�AE[M(s1:t + p1) · st]. (6)

To see this, again notice that the distributions overs1:t−1 + p1 ands1:t + p1 are similar. In particular,

E[M(s1:t−1 + p1) · st] =
∫

x∈Rn
M(s1:t−1 + x) · st d�(x)

=
∫

y∈Rn
M(s1:t + y) · st d�(y + st)

=
∫

y∈Rn
(M(s1:t + y) · st) e−�(|y+st |1−|y|1) d�(y). (7)

Finally, −�(|y + st |1 − |y|1)��|st |1��A by the triangle inequality. This establishes (6). For ��1/A,
e�A�1+ 2�A. Finally, combining the above gives,

E[cost of FPL∗(�)]�(1+ 2�A)

(
min-costT + D(1+ ln n)

�

)
.

Evaluating FPL∗(�/2A) and using the fact that��1 gives the theorem.�

Remark 1. The careful readerwill have observed thatwedid not require any positive perturbations. Since
st is always nonnegative, for Eq. (7), the theorem would hold if we choose only negative perturbations.
The reason we use a symmetric distribution is only out of convenience—to be compatible with our FLL*
algorithm, for which we do not know how to design an asymmetric version.

Remark 2. A small technical difficulty arises in that for these multiplicative algorithms,s1:t−1+pt may
havenegative components, especially for smallt. For someproblems, like theonline path problem, this can

304 A. Kalai, S. Vempala / Journal of Computer and System Sciences 71 (2005) 291–307

causedifficulty because theremaybenegative cycles in thegraph. (Coincidentally,TakimotoandWarmuth
make the assumption that the graph has no cycles whatsoever[28].) A less-restrictive approach to solving
this problem in general is to add large fixed pretend costs at the beginning, i.e.s0 = (M,M, . . . ,M). For
a sufficiently largeM, with high probability all of the components ofs0:t−1 + pt will be non-negative.
Furthermore, one can show that these costs do not have too large an effect. A more elegant solution for
the path problem is given by Awerbuch and Mansour[3].
A lazy version of the multiplicative algorithm can be defined as well:

• FLL* (�):
1. Choosep1 at random according to the densityd�(x) ∝ e−�|x|1.
2. On each periodt, useM(s1:t−1 + pt).
3. Update

(a) With probability min
(
1, d�(pt−st)

d�(pt)

)
, setpt+1 = pt − st (so thats1:t + pt+1 = s1:t−1 + pt).

(b) Otherwise, setpt+1 := −pt .

In expectation, this algorithm is equivalent to FPL*.

Proof of Lemma 1.2(FLL* case).We first argue by induction ont that the distribution ofpt for FLL*(�)
has the same densityd�(x) ∝ e−�|x|1. (In fact, this holds for any center-symmetricd�.) For t = 1 this is
trivial. For t + 1, the density atx is

d�(x + st)min

{
1,

d�(x)

d�(x + st)

}
+ d�(−x)

(
1− min

{
1,

d�(−x − st)

d�(−x)

})
. (8)

This is because we can reachpt+1 = x by either being atpt = x + st or pt = −x. Observing that
d�(−x) = d�(x),

d�(x + st)min

{
1,

d�(x)

d�(x + st)

}
=min {d�(x + st), d�(x)}

= d�(−x)min

{
1,

d�(−x − st)

d�(−x)

}
.

Thus, (8) is equal tod�(x).
Finally, the probability of switching is at most

1− d�(pt + st)

d�(pt)
= 1− e−�(|pt+st |1−|pt |1)

� 1− e−�|st |1
� �|st |1
� �A. �

Again, the above shows that the oracle need be called very rarely—only whens1:t−1 + pt changes.

5. Approximation algorithms

We have seen that the online version of linear optimization can be solved using an optimal offline
algorithm. In particular, when the offline optimization problem can be solved exactly in polynomial-time,

A. Kalai, S. Vempala / Journal of Computer and System Sciences 71 (2005) 291–307 305

so can the online version. In this section, we consider the situation when the algorithm for the offline
optimization problem is only guaranteed to find anapproximateoptimum.
We could apply our online algorithms here, with the change that instead of calling an exact optimization

oracleM, we have access to an approximation algorithmA.We say thatAachieves an�-approximation if,
on any input, the cost of the solution it finds is at most� times the minimum solution for a minimization
problem.
The difficulty in the analysis is Eq. (4). In the case of an approximation, we can only say

T∑
t=1

A(s1:t) · st ��TM(s1:T) · s1:T .

For problems with a FPTAS (see[29]), we can use say�/4 instead of� in FPL* and an� = (1+ �
6T)

approximation, because the result would be(1+ �
3)(1+ �

6T)
T �1+ � competitive.

For approximation algorithms with larger�, another type which can be used is the following:

Definition 1. An approximation algorithmA for a linear minimization problem on variablesx1, . . . , xn,
is said to achieve an� point-wise approximation toM, if on any input instancex, the solution it finds,
A(x), has the property thatE[A(x)i] < �M(x)i for all i.

The definition formaximization problems is analogous. Several algorithms have point-wise guarantees,
e.g. the max-cut algorithm of[13], the metric labeling algorithm of[18], etc.
For any sequence of states,s1, s2, . . . , st , it is easy to see that

T∑
t=1

A(st) · st ��
T∑
t=1

M(st) · st .

Thus following the perturbed leader with a pointwise approximation algorithm costs at most� times as
much as the (inefficient) exact online version, i.e. the competitive ratio goes up by a factor of�.
Other examples of approximation algorithms with pointwise guarantees include the randomized vertex

ordering algorithms of[20,10,24,9].

6. Conclusions and open problems

For many problems, exponential weighting schemes such as the weighted majority provide inefficient
online algorithms that performalmost aswell as the offline analogs.Hannan’s approach canbegeneralized
to get efficient algorithms for linear problems whose offline optimization can be done efficiently.
This separation of the online optimization problem into its online andoffline components seemshelpful.

In many cases, the guarantees of this approach may be slightly worse than custom-designed algorithms
for problems (the additive term may be slightly larger). However, we believe that this separation at least
highlights where the difficulty of a problem enters. For example, an online shortest-path algorithm[28]
must be sophisticated enough at least to solve the offline shortest path problem.
Furthermore, the simplicity of the “follow the leader” approach sheds some light on the static online

framework. The worst-case framework makes it problematic to simply follow the leader, which is a

306 A. Kalai, S. Vempala / Journal of Computer and System Sciences 71 (2005) 291–307

natural, justifiable approach that works in other models. Adding randomness simply makes the analysis
work, and is necessary only in the worst case kind of sequence where the leader changes often. (Such a
sequence may be plausible in some scenarios, such as compressing the sequence 0101….)
As one can see, there are several ways to extend the algorithm. Recently, Awerbuch and Kleinberg[2],

and Blum et al.[23] have extended the algorithm to thebanditcase of the generalization, where only
the cost of the chosen decision is revealed. Surprisingly, given only this limited feedback, they can still
guarantee asymptotically low regret. Their challenge is to nicely deal with the exploration/exploitation
tradeoff.
Other variations include tracking (following the best decision that may change a few times). We have

also considered using theL2 norm rather than theL1 norm[16]. It is not clear to us how to generalize to
other loss functions than the one used here.
Finally, while these algorithms are fairly general, there are of course many problems for which they

cannot be used. It would be great to generalize FPL to nonlinear problems such as portfolio prediction
[8]. For this kind of problem, it is not sufficient to maintain additive summary statistics.

Acknowledgments

We would like to thank Avrim Blum, Bobby Kleinberg, Danny Sleator, and the anonymous referees
for their helpful comments.

References

[1] S. Arora, Polynomial time approximation schemes for Euclidean TSP and other geometric problems, J. ACM 45 (1998)
753–782.

[2] B. Awerbuch, R. Kleinberg, Adaptive routing with end-to-end feedback: Distributed learning and geometric approaches,
in: Proceedings of the 36th ACM Symposium on Theory of Computing, 2004, pp. 45–53.

[3] B. Awerbuch,Y. Mansour, Adapting to a reliable network path, in: Proceedings of the 21st ACM Symposium on Principles
of Distributed Computing, 2003, pp. 360–367.

[4] A. Blum, On-line algorithms in machine learning, Technical Report CMU-CS-97-163, Carnegie Mellon University, 1997.
[6] A. Blum, S. Chawla, A. Kalai, Static optimality and dynamic search optimality in lists and trees, Algorithmica 36 (3)

(2003) 249–260.
[8] T. Cover, Universal portfolios, Math. Finance 1 (1991) 1–29.
[9] J. Dunagan, S.Vempala, On Euclidean embeddings and bandwidth minimization, in: Proceedings of the Fifth International

Symposium on Randomization and Approximation techniques in Computer Science, 2001, pp. 229–240.
[10] U. Feige, Approximating the bandwidth via volume respecting embeddings, in: Proceedings of the 30thACM Symposium

on the Theory of Computing, 1998, pp. 90–99.
[11] Y. Freund, R. Schapire, Y. Singer, M. Warmuth, Using and combining predictors that specialize, in: Proceedings of the

29th Annual ACM Symposium on the Theory of Computing, 1997, pp. 334–343.
[12] D. Foster, R. Vohra, Regret in the on-line decision problem, Games Econom. Behav. 29 (1999) 1084–1090.
[13] M. Goemans, D. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using

semidefinite programming, J. ACM 42 (1995) 1115–1145.
[14] J. Hannan, Approximation to Bayes risk in repeated plays, in: M. Dresher, A. Tucker, P.Wolfe (Eds.), Contributions to the

Theory of Games, vol. 3, Princeton University Press, Princeton, 1957, pp. 97–139.
[15] D. Helmbold, R. Schapire, Predicting nearly as well as the best pruning of a decision tree, Mach. Learning 27 (1) (1997)

51–68.
[16] A. Kalai, S. Vempala, Geometric algorithms for online optimization, MIT Technical Report MIT-LCS-TR-861, 2002.

A. Kalai, S. Vempala / Journal of Computer and System Sciences 71 (2005) 291–307 307

[18] J. Kleinberg, E. Tardos,Approximation algorithms for classification Problemswith Pair-wise relationships: Metric labeling
and Markov random fields, in: Proceedings of 39th Foundations of Computer Science, 1999, pp. 14–23.

[19] D. Knuth, Dynamic Huffman coding, J. Algorithms 2 (1985) 163–180.
[20] N. Linial, E. London,Y. Rabinovich, The geometry of graphs and some of its algorithmic applications, Combinatorica 15

(2) (1995) 215–245.
[21] N. Littlestone, Fromon-line to batch learning, in: Proceedings of the SecondAnnualWorkshop onComputational Learning

Theory, 1989, pp. 269–284.
[23] B. McMahan, A. Blum, Online geometric optimization in the bandit setting against an adaptive adversary, in: Proceedings

of the 17th Annual Conference on Learning Theory, 2004, pp. 109–123.
[24] S. Rao, Small distortion and volume preserving embeddings for planar and Euclidean metrics, in: Proceedings of

Symposium on Computational Geometry, 1999, pp. 300–306.
[25] Daniel Sleator, Robert Tarjan, Amortized efficiency of list update and paging rules, Comm. ACM 28 (1985) 202–208.
[26] D. Sleator, R. Tarjan, Self-adjusting binary search trees, J. ACM 32 (1985) 652–686.
[27] E. Takimoto, M.Warmuth, Predicting nearly as well as the best pruning of a planar decision graph, Theoret. Comput. Sci.

288 (2) (2002) 217–235.
[28] E. Takimoto, M. Warmuth, Path kernels and multiplicative updates, J. Mach. Learning Res. 4 (5) (2003) 773–818.
[29] V. Vazirani, Approximation Algorithms, Springer, Berlin, 2001.
[31] M. Zinkevich, Online convex programming and generalized infinitesimal gradient ascent, in: Proceedings of the 20th

International Conference on Machine Learning, 2003, pp. 928–936.

	Efficient algorithms for online decision problems62626262
	Introduction
	Linear generalization and results
	Further applications and algorithms
	Online approximation algorithms
	Online linear optimization

	Experts problem
	Additive analysis
	Follow the lazy leader

	Competitive analysis
	Approximation algorithms
	Conclusions and open problems
	References

