
CS 369 - Problem Set One
Due Date: Thursday, May 2, 2013, by end of lecture

• Please make your answers clear and concise. In most cases, you should not need more than
the equivalent of a page with size 12 font typed. You’re more likely to get points subtracted
if your proof is difficult to read or understand. To improve legibility, type your solutions if
you can.

• Each solution should start on a new page.

• Searching for answers on the Web is not allowed.

1. (10 points) Consider the least frequently used (LFU) algorithm. It keeps a counter for
the number of accesses to each page. When a cache miss occurs, it evicts the page with the
smallest value of the counter (ties are broken arbitrary). Show that LFU has an unbounded
competitive ratio. In other words, for every R, give a sequence such that the number of misses
due to LFU is at least R times more than the number of misses due to the best offline policy.

2. (10 points) Consider a randomized online paging algorithm that, on each fault, evicts a
(uniformly) random page from the cache. Prove that its competitive ratio is Ω(k), where k
is the number of pages that fit into the cache. [Hint: focus on a simple case where cache size
is k and there are only k + 1 different pages.]

3. (15 points) Show how to extend the 1/∞ case studied in class to p(k)/∞ case, i.e. job k
adds load p(k) and can be assigned to a subset of machines m(k). Note that you will get the
full credit even for 2 log(n)-competitive analysis. [Go through the proof presented in class
and show what changes are necessary, both in definitions and in claims.]

4. (20 points)

• (10pt) prove that the greedy algorithm for 1/∞ case presented in class is log(n) com-
petitive for the case where the load on each machine is defined by

∑
j pi(j) · Qi where

sum is over the jobs assigned to the machine and pi(j) is the load of job j on machine i
which is either 1 or ∞. Also Qi is an arbitrary integer scaling factor for machine i.

• (10pt) Use the previous part and extend the approach we used for 1/∞ case to design an
algorithm for unrelated machines that achieves O(log n logQ) competitive ratio, where
you are told that 1 ≤ pi(j) ≤ Q for some given Q. [Hint: look at each machine as a
logarithmic number of machines of exponentially increasing speeds.]

5. (20 points) Consider load balancing on unrelated machines. Prove that competitive ratio of
greedy algorithm (i.e. the algorithm which at each step assign the current job to the machine
which execute it with lowest resulting load) is bounded by Ω(n).

1


