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The MapReduce7 (MR) paradigm has been hailed as a 
revolutionary new platform for large-scale, massively 
parallel data access.16 Some proponents claim the 
extreme scalability of MR will relegate relational 
database management systems (DBMS) to the status  
of legacy technology. At least one enterprise, Facebook, 
has implemented a large data warehouse system  
using MR technology rather than a DBMS.14 

Here, we argue that using MR systems to perform 
tasks that are best suited for DBMSs yields less than 
satisfactory results,17 concluding that MR is more  
like an extract-transform-load (ETL) system than a
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databases are not designed for extract-
transform-load tasks, a MapReduce specialty. 
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DBMS, as it quickly loads and pro-
cesses large amounts of data in an 
ad hoc manner. As such, it comple-
ments DBMS technology rather than 
competes with it. We also discuss the 
differences in the architectural deci-
sions of MR systems and database 
systems and provide insight into how 
the systems should complement one 
another. 

The technology press has been fo-
cusing on the revolution of “cloud 
computing,” a paradigm that entails 
the harnessing of large numbers of 
processors working in parallel to solve 
computing problems. In effect, this 
suggests constructing a data center by 
lining up a large number of low-end 
servers, rather than deploying a small-
er set of high-end servers. Along with 
this interest in clusters has come a 
proliferation of tools for programming 
them. MR is one such tool, an attrac-
tive option to many because it provides 
a simple model through which users 
are able to express relatively sophisti-
cated distributed programs. 

Given the interest in the MR model 
both commercially and academically, 
it is natural to ask whether MR sys-
tems should replace parallel database 
systems. Parallel DBMSs were first 
available commercially nearly two de-
cades ago, and, today, systems (from 
about a dozen vendors) are available. 
As robust, high-performance comput-
ing platforms, they provide a high-
level programming environment that 
is inherently parallelizable. Although 
it might seem that MR and parallel 
DBMSs are different, it is possible to 
write almost any parallel-processing 
task as either a set of database queries 
or a set of MR jobs. 

Our discussions with MR users lead 
us to conclude that the most common 
use case for MR is more like an ETL sys-
tem. As such, it is complementary to 
DBMSs, not a competing technology, 
since databases are not designed to be 
good at ETL tasks. Here, we describe 
what we believe is the ideal use of MR 
technology and highlight the different 
MR and parallel DMBS markets. 
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We recently conducted a bench-
mark study using a popular open-
source MR implementation and two 
parallel DBMSs.17 The results show 
that the DBMSs are substantially fast-
er than the MR system once the data 
is loaded, but that loading the data 
takes considerably longer in the da-
tabase systems. Here, we discuss the 
source of these performance differ-
ences, including the limiting archi-
tectural factors we perceive in the two 
classes of system, and conclude with 
lessons the MR and DBMS communi-
ties can learn from each other, along 
with future trends in large-scale data 
analysis. 

Parallel Database Systems 
In the mid-1980s the Teradata20 and 
Gamma projects9 pioneered a new 
architectural paradigm for parallel 
database systems based on a clus-
ter of commodity computers called 
“shared-nothing nodes” (or separate 
CPU, memory, and disks) connected 
through a high-speed interconnect.19 
Every parallel database system built 
since then essentially uses the tech-
niques first pioneered by these two 
projects: horizontal partitioning of 
relational tables, along with the parti-
tioned execution of SQL queries. 

The idea behind horizontal parti-
tioning is to distribute the rows of a 
relational table across the nodes of 
the cluster so they can be processed 
in parallel. For example, partitioning 

a 10-million-row table across a clus-
ter of 50 nodes, each with four disks, 
would place 50,000 rows on each of 
the 200 disks. Most parallel database 
systems offer a variety of partitioning 
strategies, including hash, range, and 
round-robin partitioning.8 Under a 
hash-partitioning physical layout, as 
each row is loaded, a hash function 
is applied to one or more attributes 
of each row to determine the target 
node and disk where the row should 
be stored. 

 The use of horizontal partitioning 
of tables across the nodes of a cluster 
is critical to obtaining scalable per-
formance of SQL queries8 and leads 
naturally to the concept of partitioned 
execution of the SQL operators: selec-
tion, aggregation, join, projection, and 
update. As an example how data parti-
tioning is used in a parallel DBMS, con-
sider the following SQL query: 

SELECT custId, amount FROM Sales
 WHERE date BETWEEN  
 “12/1/2009” AND “12/25/2009”;

With the Sales table horizontally 
partitioned across the nodes of the 
cluster, this query can be trivially 
executed in parallel by executing a 
SELECT operator against the Sales 
records with the specified date predi-
cate on each node of the cluster. The 
intermediate results from each node 
are then sent to a single node that per-
forms a MERGE operation in order to 

return the final result to the applica-
tion program that issued the query. 

Suppose we would like to know 
the total sales amount for each custId 
within the same date range. This is 
done through the following query: 

SELECT custId, SUM(amount) 
FROM Sales
 WHERE date BETWEEN 
 “12/1/2009” AND “12/25/2009”  
 GROUP BY custId;

If the Sales table is round-robin 
partitioned across the nodes in the 
cluster, then the rows corresponding 
to any single customer will be spread 
across multiple nodes. The DBMS 
compiles this query into the three-op-
erator pipeline in Figure(a), then ex-
ecutes the query plan on all the nodes 
in the cluster in parallel. Each SELECT 
operator scans the fragment of the 
Sales table stored at that node. Any 
rows satisfying the date predicate are 
passed to a SHUFFLE operator that dy-
namically repartitions the rows; this 
is typically done by applying a hash 
function on the value of the custId at-
tribute of each row to map them to a 
particular node. Since the same hash 
function is used for the SHUFFLE op-
eration on all nodes, rows for the same 
customer are routed to the single node 
where they are aggregated to compute 
the final total for each customer. 

As a final example of how SQL is par-
allelized using data partitioning, con-
sider the following query for finding 
the names and email addresses of cus-
tomers who purchased an item costing 
more than $1,000 during the holiday 
shopping period: 

SELECT C.name, C.email FROM 
Customers C, Sales S
 WHERE C.custId = S.custId 
 AND S.amount > 1000

AND S.date BETWEEN  
	 “12/1/2009” AND  
	 “12/25/2009”;

Assume again that the Sales table is 
round-robin partitioned, but we now 
hash-partition the Customers table 
on the Customer.custId attribute. The 
DBMS compiles this query into the 
operator pipeline in Figure(b) that is 
executed in parallel at all nodes in the 
cluster. Each SELECT operator scans 

Parallel database query execution plans. (a) Example operator pipeline for calculating  
a single-table aggregate. (b) Example operator pipeline for performing a joining on two 
partitioned tables.
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by the following template of five opera-
tions: 

Read logs of information from sev-˲˲

eral different sources; 
Parse and clean the log data; ˲˲

Perform complex transformations ˲˲

(such as “sessionalization”); 
Decide what attribute data to store; ˲˲

and 
Load the information into a DBMS ˲˲

or other storage engine. 
These steps are analogous to the 

extract, transform, and load phases in 
ETL systems; the MR system is essen-
tially “cooking” raw data into useful in-
formation that is consumed by another 
storage system. Hence, an MR system 
can be considered a general-purpose 
parallel ETL system. 

For parallel DBMSs, many products 
perform ETL, including Ascential, In-
formatica, Jaspersoft, and Talend. The 
market is large, as almost all major 
enterprises use ETL systems to load 
large quantities of data into data ware-
houses. One reason for this symbiotic 
relationship is the clear distinction 
as to what each class of system pro-
vides to users: DBMSs do not try to do 
ETL, and ETL systems do not try to do 
DBMS services. An ETL system is typi-
cally upstream from a DBMS, as the 
load phase usually feeds data directly 
into a DBMS. 

Complex analytics. In many data-
mining and data-clustering applica-
tions, the program must make multiple 
passes over the data. Such applications 
cannot be structured as single SQL ag-
gregate queries, requiring instead a 
complex dataflow program where the 
output of one part of the application is 
the input of another. MR is a good can-
didate for such applications. 

Semi-structured data. Unlike a 
DBMS, MR systems do not require us-
ers to define a schema for their data. 
Thus, MR-style systems easily store 
and process what is known as “semi-
structured” data. In our experience, 
such data often looks like key-value 
pairs, where the number of attributes 
present in any given record varies; this 
style of data is typical of Web traffic 
logs derived from disparate sources. 

With a relational DBMS, one way to 
model such data is to use a wide table 
with many attributes to accommo-
date multiple record types. Each un-
required attribute uses NULLs for the 

its fragment of the Sales table looking 
for rows that satisfy the predicate 

S.amount > 1000 and S.date  
BETWEEN “12/1/2009” and 
“12/25/2009.” 

Qualifying rows are pipelined into 
a shuffle operator that repartitions its 
input rows by hashing on the Sales.
custId attribute. By using the same 
hash function that was used when 
loading rows of the Customer table 
(hash partitioned on the Customer.
custId attribute), the shuffle operators 
route each qualifying Sales row to the 
node where the matching Customer 
tuple is stored, allowing the join op-
erator (C.custId = S.custId) to execute 
in parallel on all the nodes. 

Another key benefit of parallel 
DBMSs is that the system automati-
cally manages the various alternative 
partitioning strategies for the tables 
involved in the query. For example, if 
Sales and Customers are each hash-par-
titioned on their custId attribute, the 
query optimizer will recognize that the 
two tables are both hash-partitioned 
on the joining attributes and omit the 
shuffle operator from the compiled 
query plan. Likewise, if both tables are 
round-robin partitioned, then the opti-
mizer will insert shuffle operators for 
both tables so tuples that join with one 
another end up on the same node. All 
this happens transparently to the user 
and to application programs. 

Many commercial implementa-
tions are available, including Terada-
ta, Netezza, DataAllegro (Microsoft), 
ParAccel, Greenplum, Aster, Vertica, 
and DB2. All run on shared-nothing 
clusters of nodes, with tables horizon-
tally partitioned over them. 

Mapping Parallel DBMSs 
onto MapReduce 
An attractive quality of the MR program-
ming model is simplicity; an MR pro-
gram consists of only two functions—
Map and Reduce—written by a user to 
process key/value data pairs.7 The input 
data set is stored in a collection of par-
titions in a distributed file system de-
ployed on each node in the cluster. The 
program is then injected into a distrib-
uted-processing framework and execut-
ed in a manner to be described. The MR 
model was first popularized by Google 

in 2004, and, today, numerous open 
source and commercial implementa-
tions are available. The most popular 
MR system is Hadoop, an open-source 
project under development by Yahoo! 
and the Apache Software Foundation 
(http://hadoop.apache.org/). 

The semantics of the MR model are 
not unique, as the filtering and trans-
formation of individual data items 
(tuples in tables) can be executed by a 
modern parallel DBMS using SQL. For 
Map operations not easily expressed 
in SQL, many DBMSs support user-
defined functions18; UDF extensibility 
provides the equivalent functionality 
of a Map operation. SQL aggregates 
augmented with UDFs and user-de-
fined aggregates provide DBMS users 
the same MR-style reduce functional-
ity. Lastly, the reshuffle that occurs 
between the Map and Reduce tasks in 
MR is equivalent to a GROUP BY opera-
tion in SQL. Given this, parallel DBMSs 
provide the same computing model as 
MR, with the added benefit of using a 
declarative language (SQL). 

The linear scalability of parallel 
DBMSs has been widely touted for 
two decades10; that is, as nodes are 
added to an installation, the database 
size can be increased proportionally 
while maintaining constant response 
times. Several production databases 
in the multi-petabyte range are run 
by very large customers operating 
on clusters of order 100 nodes.13 The 
people who manage these systems 
do not report the need for additional 
parallelism. Thus, parallel DBMSs of-
fer great scalability over the range of 
nodes that customers desire. There is 
no reason why scalability cannot be 
increased dramatically to the levels 
reported by Jeffrey Dean and Sanjay 
Ghemawat,7 assuming there is cus-
tomer demand. 

Possible Applications 
Even though parallel DBMSs are able 
to execute the same semantic workload 
as MR, several application classes are 
routinely mentioned as possible use 
cases in which the MR model might be 
a better choice than a DBMS. We now 
explore five of these scenarios, discuss-
ing the ramifications of using one class 
of system over another: 

ETL and “read once” data sets. The 
canonical use of MR is characterized 
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cal tasks of increasing complexity we 
think are common processing tasks 
that could be done using either class 
of systems. We ran all experiments on 
a 100-node shared-nothing cluster at 
the University of Wisconsin-Madison. 
The full paper17 includes the complete 
results and discussion from all our ex-
periments, including load times; here, 
we provide a summary of the most 
interesting results. (The source code 
for the benchmark study is available 
at http://database.cs.brown.edu/proj-
ects/mapreduce-vs-dbms/.) 

Hadoop is by far the most popular 
publicly available version of the MR 
framework (the Google version might 
be faster but is not available to us), and 
DBMS-X and Vertica are popular row- 
and column-store parallel database 
systems, respectively. 

In the time since publication of 
Pavlo et al.17 we have continued to 
tune all three systems. Moreover, we 
have received many suggestions from 
the Hadoop community on ways to 
improve performance. We have tried 
them all, and the results here (as of 
August 2009) represent the best we 
can do with a substantial amount of 
expert help on all three systems. In 
fact, the time we’ve spent tuning Ha-
doop has now exceeded the time we 
spent on either of the other systems. 
Though Hadoop offers a good out-of-
the-box experience, tuning it to obtain 
maximum performance was an ardu-
ous task. Obviously, performance is a 
moving target, as new releases of all 
three products occur regularly 

Original MR Grep task. Our first 
benchmark experiment is the “Grep 
task’” from the original MR paper, 
which described it as “representative 
of a large subset of the real programs 
written by users of MapReduce.”7 
For the task, each system must scan 
through a data set of 100B records 
looking for a three-character pattern. 
Each record consists of a unique key 
in the first 10B, followed by a 90B 
random value. The search pattern is 
found only in the last 90B once in ev-
ery 10,000 records. We use a 1TB data 
set spread over the 100 nodes (10GB/
node). The data set consists of 10 bil-
lion records, each 100B. Since this is 
essentially a sequential search of the 
data set looking for the pattern, it pro-
vides a simple measurement of how 

values that are not present for a given 
record. Row-based DBMSs generally 
have trouble with the tables, often suf-
fering poor performance. On the other 
hand, column-based DBMSs (such as 
Vertica) mitigate the problem by read-
ing only the relevant attributes for any 
query and automatically suppressing 
the NULL values.3 These techniques 
have been shown to provide good per-
formance on RDF data sets,2 and we 
expect the same would be true for sim-
pler key-value data. 

To the extent that semistructured 
data fits the “cooking” paradigm dis-
cussed earlier (that is, the data is pre-
pared for loading into a back-end da-
ta-processing system), then MR-style 
systems are a good fit. If the semistruc-
tured data set is primarily for analytical 
queries, we expect a parallel column 
store to be a better solution. 

Quick-and-dirty analyses. One disap-
pointing aspect of many current paral-
lel DBMSs is that they are difficult to 
install and configure properly, as users 
are often faced with a myriad of tuning 
parameters that must be set correctly 
for the system to operate effectively. 
From our experiences with installing 
two commercial parallel systems, an 
open-source MR implementation pro-
vides the best “out-of-the-box” experi-
ence17; that is, we were able to get the 
MR system up and running queries 
significantly faster than either of the 
DBMSs. In fact, it was not until we re-
ceived expert support from one of the 
vendors that we were able to get one 
particular DBMS to run queries that 
completed in minutes, rather than 
hours or days. 

Once a DBMS is up and running 
properly, programmers must still 
write a schema for their data (if one 
does not already exist), then load the 
data set into the system. This process 
takes considerably longer in a DBMS 
than in an MR system, because the 
DBMS must parse and verify each da-
tum in the tuples. In contrast, the de-
fault (therefore most common) way for 
MR programmers to load their data is 
to just copy it into the MR system’s un-
derlying distributed block-based stor-
age system. 

If a programmer must perform some 
one-off analysis on transient data, then 
the MR model’s quick startup time is 
clearly preferable. On the other hand, 

professional DBMS programmers and 
administrators are more willing to 
pay in terms of longer learning curves 
and startup times, because the perfor-
mance gains from faster queries offset 
the upfront costs. 

Limited-budget operations. Another 
strength of MR systems is that most 
are open source projects available for 
free. DBMSs, and in particular parallel 
DBMSs, are expensive; though there 
are good single-node open source 
solutions, to the best of our knowl-
edge, there are no robust, community-
supported parallel DBMSs. Though 
enterprise users with heavy demand 
and big budgets might be willing to 
pay for a commercial system and all 
the tools, support, and service agree-
ments those systems provide, users 
with more modest budgets or require-
ments find open source systems more 
attractive. The database community 
has missed an opportunity by not pro-
viding a more complete parallel, open 
source solution. 

Powerful tools. MR systems are fun-
damentally powerful tools for ETL-style 
applications and for complex analyt-
ics. Additionally, they are popular for 
“quick and dirty” analyses and for us-
ers with limited budgets. On the other 
hand, if the application is query-inten-
sive, whether semistructured or rigidly 
structured, then a DBMS is probably 
the better choice. In the next section, 
we discuss results from use cases that 
demonstrate this performance superi-
ority; the processing tasks range from 
those MR systems ought to be good at to 
those that are quite complex queries. 

DBMS “Sweet Spot”  
To demonstrate the performance 
trade-offs between parallel DBMSs and 
MR systems, we published a bench-
mark comparing two parallel DBMSs 
to the Hadoop MR framework on a va-
riety of tasks.17 We wished to discover 
the performance envelope of each ap-
proach when applied to areas inside 
and outside their target application 
space. We used two database systems: 
Vertica, a commercial column-store 
relational database, and DBMS-X, a 
row-based database from a large com-
mercial vendor. Our benchmark study 
included a simple benchmark pre-
sented in the original MR paper from 
Google,7 as well as four other analyti-
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quickly a software system can scan 
through a large collection of records. 
The task cannot take advantage of any 
sorting or indexing and is easy to spec-
ify in both MR and SQL. Therefore, one 
would expect a lower-level interface 
(such as Hadoop) running directly on 
top of the file system (HDFS) to exe-
cute faster than the more heavyweight 
DBMSs. 

However, the execution times in the 
table here show a surprising result: The 
database systems are about two times 
faster than Hadoop. We explain some 
of the reasons for this conclusion in the 
section on architectural differences.

Web log task. The second task is a 
conventional SQL aggregation with 
a GROUP BY clause on a table of user 
visits in a Web server log. Such data 
is fairly typical of Web logs, and the 
query is commonly used in traffic ana-
lytics. For this experiment, we used 
a 2TB data set consisting of 155 mil-
lion records spread over the 100 nodes 
(20GB/node). Each system must calcu-
late the total ad revenue generated for 
each visited IP address from the logs. 
Like the previous task, the records 
must all be read, and thus there is no 
indexing opportunity for the DBMSs. 
One might think that Hadoop would 
excel at this task since it is a straight-
forward calculation, but the results in 
the table show that Hadoop is beaten 
by the databases by a larger margin 
than in the Grep task. 

Join task. The final task we discuss 
here is a fairly complex join operation 
over two tables requiring an additional 
aggregation and filtering operation. 
The user-visit data set from the previ-
ous task is joined with an additional 
100GB table of PageRank values for 18 
million URLs (1GB/node). The join task 
consists of two subtasks that perform a 
complex calculation on the two data 
sets. In the first part of the task, each 
system must find the IP address that 
generated the most revenue within a 
particular date range in the user visits. 
Once these intermediate records are 
generated, the system must then calcu-
late the average PageRank of all pages 
visited during this interval. 

DBMSs ought to be good at analyti-
cal queries involving complex join op-
erations (see the table). The DBMSs are 
a factor of 36 and 21 respectively faster 
than Hadoop. In general, query times 

for a typical user task fall somewhere 
in between these extremes. In the next 
section, we explore the reasons for 
these results. 

Architectural Differences 
The performance differences between 
Hadoop and the DBMSs can be ex-
plained by a variety of factors. Before 
delving into the details, we should say 
these differences result from imple-
mentation choices made by the two 
classes of system, not from any funda-
mental difference in the two models. 
For example, the MR processing model 
is independent of the underlying stor-
age system, so data could theoretically 
be massaged, indexed, compressed, 
and carefully laid out on storage during 
a load phase, just like a DBMS. Hence, 
the goal of our study was to compare 
the real-life differences in performance 
of representative realizations of the 
two models. 

Repetitive record parsing. One con-
tributing factor for Hadoop’s slower 
performance is that the default con-
figuration of Hadoop stores data in 
the accompanying distributed file 
system (HDFS), in the same textual 
format in which the data was gen-
erated. Consequently, this default 
storage method places the burden of 
parsing the fields of each record on 
user code. This parsing task requires 
each Map and Reduce task repeatedly 
parse and convert string fields into 
the appropriate type. Hadoop pro-
vides the ability to store data as key/
value pairs as serialized tuples called 
SequenceFiles, but despite this ability 
it still requires user code to parse the 
value portion of the record if it con-
tains multiple attributes. Thus, we 
found that using SequenceFiles with-
out compression consistently yielded 
slower performance on our bench-
mark. Note that using SequenceFiles 
without compression was but one of 
the tactics for possibly improving Ha-

doop’s performance suggested by the 
MR community. 

In contrast to repetitive parsing in 
MR, records are parsed by DBMSs when 
the data is initially loaded. This initial 
parsing step allows the DBMSs storage 
manager to carefully lay out records 
in storage such that attributes can be 
directly addressed at runtime in their 
most efficient storage representation. 
As such, there is no record interpreta-
tion performed during query execution 
in parallel DBMSs. 

There is nothing fundamental about 
the MR model that says data cannot be 
parsed in advance and stored in opti-
mized data structures (that is, trad-
ing off some load time for increased 
runtime performance). For example, 
data could be stored in the underly-
ing file system using Protocol Buffers 
(http://code.google.com/p/protobuf/), 
Google’s platform-neutral, extensible 
mechanism for serializing structured 
data; this option is not available in Ha-
doop. Alternatively, one could move 
the data outside the MR framework 
into a relational DBMS at each node, 
thereby replacing the HDFS storage 
layer with DBMS-style optimized stor-
age for structured data.4 

There may be ways to improve the 
Hadoop system by taking advantage of 
these ideas. Hence, parsing overhead 
is a problem, and SequenceFiles are 
not an effective solution. The problem 
should be viewed as a signpost for guid-
ing future development. 

Compression. We found that enabling 
data compression in the DBMSs deliv-
ered a significant performance gain. 
The benchmark results show that using 
compression in Vertica and DBMS-X on 
these workloads improves performance 
by a factor of two to four. On the other 
hand, Hadoop often executed slower 
when we used compression on its input 
files; at most, compression improved 
performance by 15%; the benchmark 
results in Dean and Ghemawat7 also 

Benchmark performance on a 100-node cluster. 

Hadoop DBMS-X Vertica Hadoop/DBMS-X Hadoop/Vertica

Grep 284s 194s 108x 1.5x 2.6x

Web Log 1,146s 740s 268s 1.6x 4.3x

Join 1,158s 32s 55s 36.3x 21.0x
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did not use compression. 
It is unclear to us why this improve-

ment was insignficant, as essentially 
all commercial SQL data warehouses 
use compression to improve perfor-
mance. We postulate that commer-
cial DBMSs use carefully tuned com-
pression algorithms to ensure that 
the cost of decompressing tuples 
does not offset the performance gains 
from the reduced I/O cost of reading 
compressed data. For example, we 
have found that on modern proces-
sors standard Unix implementations 
of gzip and bzip are often too slow to 
provide any benefit. 

Pipelining. All parallel DBMSs op-
erate by creating a query plan that is 
distributed to the appropriate nodes 
at execution time. When one opera-
tor in this plan must send data to the 
next operator, regardless of whether 
that operator is running on the same 
or a different node, the qualifying 
data is “pushed” by the first operator 
to the second operator. Hence, data is 
streamed from producer to consumer; 
the intermediate data is never written 
to disk; the resulting “back-pressure” 
in the runtime system will stall the pro-
ducer before it has a chance to overrun 
the consumer. This streaming tech-
nique differs from the approach taken 
in MR systems, where the producer 
writes the intermediate results to lo-
cal data structures, and the consumer 
subsequently “pulls” the data. These 
data structures are often quite large, 
so the system must write them out to 
disk, introducing a potential bottle-
neck. Though writing data structures 
to disk gives Hadoop a convenient way 
to checkpoint the output of intermedi-
ate map jobs, thereby improving fault 
tolerance, we found from our investi-
gation that it adds significant perfor-
mance overhead. 

Scheduling. In a parallel DBMS, 
each node knows exactly what it must 
do and when it must do it according to 
the distributed query plan. Because the 
operations are known in advance, the 
system is able to optimize the execu-
tion plan to minimize data transmis-
sion between nodes. In contrast, each 
task in an MR system is scheduled on 
processing nodes one storage block at 
a time. Such runtime work schedul-
ing at a granularity of storage blocks is 
much more expensive than the DBMS 

compile-time scheduling. The former 
has the advantage, as some have ar-
gued,4 of allowing the MR scheduler 
to adapt to workload skew and perfor-
mance differences between nodes. 

Column-oriented storage. In a column 
store-based database (such as Vertica), 
the system reads only the attributes 
necessary for solving the user query. 
This limited need for reading data rep-
resents a considerable performance 
advantage over traditional, row-stored 
databases, where the system reads all 
attributes off the disk. DBMS-X and 
Hadoop/HDFS are both essentially row 
stores, while Vertica is a column store, 
giving Vertica a significant advantage 
over the other two systems in our Web 
log benchmark task. 

Discussion. The Hadoop community 
will presumably fix the compression 
problem in a future release. Further-
more, some of the other performance 
advantages of parallel databases (such 
as column-storage and operating di-
rectly on compressed data) can be 
implemented in an MR system with 
user code. Also, other implementa-
tions of the MR framework (such as 
Google’s proprietary implementation) 
may well have a different performance 
envelope. The scheduling mechanism 
and pull model of data transmission 
are fundamental to the MR block-level 
fault-tolerance model and thus unlike-
ly to be changed. 

Meanwhile, DBMSs offer transac-
tion-level fault tolerance. DBMS re-
searchers often point out that as da-
tabases get bigger and the number of 
nodes increases, the need for finer-
granularity fault tolerance increases as 
well. DBMSs readily adapt to this need 
by marking one or more operators in a 
query plan as “restart operators.” The 
runtime system saves the result of these 
operators to disk, facilitating “operator 
level” restart. Any number of operators 
can be so marked, allowing the granu-
larity of restart to be tuned. Such a 
mechanism is easily integrated into the 
efficient query execution framework of 
DBMSs while allowing variable granu-
larity restart. We know of at least two 
separate research groups, one at the 
University of Washington, the other at 
the University of California, Berkeley, 
that are exploring the trade-off between 
runtime overhead and the amount of 
work lost when a failure occurs. 

The commercial 
DBMS products 
must move 
toward one-button 
installs, automatic 
tuning that works 
correctly, better 
Web sites with 
example code, 
better query 
generators, 
and better 
documentation.  
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We generally expect ETL and com-
plex analytics to be amenable to MR 
systems and query-intensive workloads 
to be run by DBMSs. Hence, we expect 
the best solution is to interface an MR 
framework to a DBMS so MR can do 
complex analytics, and interface to a 
DBMS to do embedded queries. Ha-
doopDB,4 Hive,21 Aster, Greenplum, 
Cloudera, and Vertica all have com-
mercially available products or proto-
types in this “hybrid” category. 

Learning from Each Other 
What can MR learn from DBMSs? MR 
advocates should learn from parallel 
DBMS the technologies and techniques 
for efficient query parallel execution. 
Engineers should stand on the shoul-
ders of those who went before, rather 
than on their toes. There are many 
good ideas in parallel DBMS executors 
that MR system developers would be 
wise to adopt. 

We also feel that higher-level lan-
guages are invariably a good idea for 
any data-processing system. Rela-
tional DBMSs have been fabulously 
successful in pushing programmers 
to a higher, more-productive level of 
abstraction, where they simply state  
what they want from the system, rath-
er than writing an algorithm for how 
to get what they want from the system. 
In our benchmark study, we found 
that writing the SQL code for each task 
was substantially easier than writing 
MR code. 

Efforts to build higher-level inter-
faces on top of MR/Hadoop should be 
accelerated; we applaud Hive,21 Pig,15 
Scope,6 Dryad/Linq,12 and other proj-
ects that point the way in this area. 

What can DBMSs learn from MR? 
The out-of-the-box experience for most 
DBMSs is less than ideal for being able 
to quickly set up and begin running 
queries. The commercial DBMS prod-
ucts must move toward one-button 
installs, automatic tuning that works 
correctly, better Web sites with exam-
ple code, better query generators, and 
better documentation. 

Most database systems cannot deal 
with tables stored in the file system (in 
situ data). Consider the case where a 
DBMS is used to store a very large data 
set on which a user wishes to perform 
analysis in conjunction with a smaller, 
private data set. In order to access the 

larger data set, the user must first load 
the data into the DBMS. Unless the 
user plans to run many analyses, it is 
preferable to simply point the DBMS 
at data on the local disk without a 
load phase. There is no good reason 
DBMSs cannot deal with in situ data. 
Though some database systems (such 
as PostgreSQL, DB2, and SQL Server) 
have capabilities in this area, further 
flexibility is needed. 

Conclusion
Most of the architectural differences 
discussed here are the result of the 
different focuses of the two classes of 
system. Parallel DBMSs excel at effi-
cient querying of large data sets; MR-
style systems excel at complex analyt-
ics and ETL tasks. Neither is good at 
what the other does well. Hence, the 
two technologies are complementary, 
and we expect MR-style systems per-
forming ETL to live directly upstream 
from DBMSs. 

Many complex analytical problems 
require the capabilities provided by 
both systems. This requirement moti-
vates the need for interfaces between 
MR systems and DBMSs that allow each 
system to do what it is good at. The re-
sult is a much more efficient overall 
system than if one tries to do the entire 
application in either system. That is, 
“smart software” is always a good idea. 
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