
64 communications of the acm | January 2010 | vol. 53 | no. 1

The MapReduce7 (MR) paradigm has been hailed as a
revolutionary new platform for large-scale, massively
parallel data access.16 Some proponents claim the
extreme scalability of MR will relegate relational
database management systems (DBMS) to the status
of legacy technology. At least one enterprise, Facebook,
has implemented a large data warehouse system
using MR technology rather than a DBMS.14

Here, we argue that using MR systems to perform
tasks that are best suited for DBMSs yields less than
satisfactory results,17 concluding that MR is more
like an extract-transform-load (ETL) system than a

doi:10.1145/1629175.1629197

MapReduce complements DBMSs since
databases are not designed for extract-
transform-load tasks, a MapReduce specialty.

by Michael Stonebraker, Daniel Abadi,
David J. DeWitt, Sam Madden, Erik Paulson,
Andrew Pavlo, and Alexander Rasin

MapReduce
and Parallel
DBMSs:
Friends
or Foes?

DBMS, as it quickly loads and pro-
cesses large amounts of data in an
ad hoc manner. As such, it comple-
ments DBMS technology rather than
competes with it. We also discuss the
differences in the architectural deci-
sions of MR systems and database
systems and provide insight into how
the systems should complement one
another.

The technology press has been fo-
cusing on the revolution of “cloud
computing,” a paradigm that entails
the harnessing of large numbers of
processors working in parallel to solve
computing problems. In effect, this
suggests constructing a data center by
lining up a large number of low-end
servers, rather than deploying a small-
er set of high-end servers. Along with
this interest in clusters has come a
proliferation of tools for programming
them. MR is one such tool, an attrac-
tive option to many because it provides
a simple model through which users
are able to express relatively sophisti-
cated distributed programs.

Given the interest in the MR model
both commercially and academically,
it is natural to ask whether MR sys-
tems should replace parallel database
systems. Parallel DBMSs were first
available commercially nearly two de-
cades ago, and, today, systems (from
about a dozen vendors) are available.
As robust, high-performance comput-
ing platforms, they provide a high-
level programming environment that
is inherently parallelizable. Although
it might seem that MR and parallel
DBMSs are different, it is possible to
write almost any parallel-processing
task as either a set of database queries
or a set of MR jobs.

Our discussions with MR users lead
us to conclude that the most common
use case for MR is more like an ETL sys-
tem. As such, it is complementary to
DBMSs, not a competing technology,
since databases are not designed to be
good at ETL tasks. Here, we describe
what we believe is the ideal use of MR
technology and highlight the different
MR and parallel DMBS markets.

contributed articles

I
l

l
u

s
t

r
a

t
i

o
n

 b
y

 M
a

r
i

u
s

 w
a

t
z

january 2010 | vol. 53 | no. 1 | communications of the acm 65

66 communications of the acm | January 2010 | vol. 53 | no. 1

contributed articles

We recently conducted a bench-
mark study using a popular open-
source MR implementation and two
parallel DBMSs.17 The results show
that the DBMSs are substantially fast-
er than the MR system once the data
is loaded, but that loading the data
takes considerably longer in the da-
tabase systems. Here, we discuss the
source of these performance differ-
ences, including the limiting archi-
tectural factors we perceive in the two
classes of system, and conclude with
lessons the MR and DBMS communi-
ties can learn from each other, along
with future trends in large-scale data
analysis.

Parallel Database Systems
In the mid-1980s the Teradata20 and
Gamma projects9 pioneered a new
architectural paradigm for parallel
database systems based on a clus-
ter of commodity computers called
“shared-nothing nodes” (or separate
CPU, memory, and disks) connected
through a high-speed interconnect.19
Every parallel database system built
since then essentially uses the tech-
niques first pioneered by these two
projects: horizontal partitioning of
relational tables, along with the parti-
tioned execution of SQL queries.

The idea behind horizontal parti-
tioning is to distribute the rows of a
relational table across the nodes of
the cluster so they can be processed
in parallel. For example, partitioning

a 10-million-row table across a clus-
ter of 50 nodes, each with four disks,
would place 50,000 rows on each of
the 200 disks. Most parallel database
systems offer a variety of partitioning
strategies, including hash, range, and
round-robin partitioning.8 Under a
hash-partitioning physical layout, as
each row is loaded, a hash function
is applied to one or more attributes
of each row to determine the target
node and disk where the row should
be stored.

 The use of horizontal partitioning
of tables across the nodes of a cluster
is critical to obtaining scalable per-
formance of SQL queries8 and leads
naturally to the concept of partitioned
execution of the SQL operators: selec-
tion, aggregation, join, projection, and
update. As an example how data parti-
tioning is used in a parallel DBMS, con-
sider the following SQL query:

SELECT custId, amount FROM Sales
 WHERE date BETWEEN
 “12/1/2009” AND “12/25/2009”;

With the Sales table horizontally
partitioned across the nodes of the
cluster, this query can be trivially
executed in parallel by executing a
SELECT operator against the Sales
records with the specified date predi-
cate on each node of the cluster. The
intermediate results from each node
are then sent to a single node that per-
forms a MERGE operation in order to

return the final result to the applica-
tion program that issued the query.

Suppose we would like to know
the total sales amount for each custId
within the same date range. This is
done through the following query:

SELECT custId, SUM(amount)
FROM Sales
 WHERE date BETWEEN
 “12/1/2009” AND “12/25/2009”
 GROUP BY custId;

If the Sales table is round-robin
partitioned across the nodes in the
cluster, then the rows corresponding
to any single customer will be spread
across multiple nodes. The DBMS
compiles this query into the three-op-
erator pipeline in Figure(a), then ex-
ecutes the query plan on all the nodes
in the cluster in parallel. Each SELECT
operator scans the fragment of the
Sales table stored at that node. Any
rows satisfying the date predicate are
passed to a SHUFFLE operator that dy-
namically repartitions the rows; this
is typically done by applying a hash
function on the value of the custId at-
tribute of each row to map them to a
particular node. Since the same hash
function is used for the SHUFFLE op-
eration on all nodes, rows for the same
customer are routed to the single node
where they are aggregated to compute
the final total for each customer.

As a final example of how SQL is par-
allelized using data partitioning, con-
sider the following query for finding
the names and email addresses of cus-
tomers who purchased an item costing
more than $1,000 during the holiday
shopping period:

SELECT C.name, C.email FROM
Customers C, Sales S
 WHERE C.custId = S.custId
 AND S.amount > 1000

AND S.date BETWEEN
	 “12/1/2009” AND
	 “12/25/2009”;

Assume again that the Sales table is
round-robin partitioned, but we now
hash-partition the Customers table
on the Customer.custId attribute. The
DBMS compiles this query into the
operator pipeline in Figure(b) that is
executed in parallel at all nodes in the
cluster. Each SELECT operator scans

Parallel database query execution plans. (a) Example operator pipeline for calculating
a single-table aggregate. (b) Example operator pipeline for performing a joining on two
partitioned tables.

Sales

Select

Shuffle

Sum

Sales

Select

Shuffle

Join

(b)(a)

contributed articles

january 2010 | vol. 53 | no. 1 | communications of the acm 67

by the following template of five opera-
tions:

Read logs of information from sev-˲˲

eral different sources;
Parse and clean the log data; ˲˲

Perform complex transformations ˲˲

(such as “sessionalization”);
Decide what attribute data to store; ˲˲

and
Load the information into a DBMS ˲˲

or other storage engine.
These steps are analogous to the

extract, transform, and load phases in
ETL systems; the MR system is essen-
tially “cooking” raw data into useful in-
formation that is consumed by another
storage system. Hence, an MR system
can be considered a general-purpose
parallel ETL system.

For parallel DBMSs, many products
perform ETL, including Ascential, In-
formatica, Jaspersoft, and Talend. The
market is large, as almost all major
enterprises use ETL systems to load
large quantities of data into data ware-
houses. One reason for this symbiotic
relationship is the clear distinction
as to what each class of system pro-
vides to users: DBMSs do not try to do
ETL, and ETL systems do not try to do
DBMS services. An ETL system is typi-
cally upstream from a DBMS, as the
load phase usually feeds data directly
into a DBMS.

Complex analytics. In many data-
mining and data-clustering applica-
tions, the program must make multiple
passes over the data. Such applications
cannot be structured as single SQL ag-
gregate queries, requiring instead a
complex dataflow program where the
output of one part of the application is
the input of another. MR is a good can-
didate for such applications.

Semi-structured data. Unlike a
DBMS, MR systems do not require us-
ers to define a schema for their data.
Thus, MR-style systems easily store
and process what is known as “semi-
structured” data. In our experience,
such data often looks like key-value
pairs, where the number of attributes
present in any given record varies; this
style of data is typical of Web traffic
logs derived from disparate sources.

With a relational DBMS, one way to
model such data is to use a wide table
with many attributes to accommo-
date multiple record types. Each un-
required attribute uses NULLs for the

its fragment of the Sales table looking
for rows that satisfy the predicate

S.amount > 1000 and S.date
BETWEEN “12/1/2009” and
“12/25/2009.”

Qualifying rows are pipelined into
a shuffle operator that repartitions its
input rows by hashing on the Sales.
custId attribute. By using the same
hash function that was used when
loading rows of the Customer table
(hash partitioned on the Customer.
custId attribute), the shuffle operators
route each qualifying Sales row to the
node where the matching Customer
tuple is stored, allowing the join op-
erator (C.custId = S.custId) to execute
in parallel on all the nodes.

Another key benefit of parallel
DBMSs is that the system automati-
cally manages the various alternative
partitioning strategies for the tables
involved in the query. For example, if
Sales and Customers are each hash-par-
titioned on their custId attribute, the
query optimizer will recognize that the
two tables are both hash-partitioned
on the joining attributes and omit the
shuffle operator from the compiled
query plan. Likewise, if both tables are
round-robin partitioned, then the opti-
mizer will insert shuffle operators for
both tables so tuples that join with one
another end up on the same node. All
this happens transparently to the user
and to application programs.

Many commercial implementa-
tions are available, including Terada-
ta, Netezza, DataAllegro (Microsoft),
ParAccel, Greenplum, Aster, Vertica,
and DB2. All run on shared-nothing
clusters of nodes, with tables horizon-
tally partitioned over them.

Mapping Parallel DBMSs
onto MapReduce
An attractive quality of the MR program-
ming model is simplicity; an MR pro-
gram consists of only two functions—
Map and Reduce—written by a user to
process key/value data pairs.7 The input
data set is stored in a collection of par-
titions in a distributed file system de-
ployed on each node in the cluster. The
program is then injected into a distrib-
uted-processing framework and execut-
ed in a manner to be described. The MR
model was first popularized by Google

in 2004, and, today, numerous open
source and commercial implementa-
tions are available. The most popular
MR system is Hadoop, an open-source
project under development by Yahoo!
and the Apache Software Foundation
(http://hadoop.apache.org/).

The semantics of the MR model are
not unique, as the filtering and trans-
formation of individual data items
(tuples in tables) can be executed by a
modern parallel DBMS using SQL. For
Map operations not easily expressed
in SQL, many DBMSs support user-
defined functions18; UDF extensibility
provides the equivalent functionality
of a Map operation. SQL aggregates
augmented with UDFs and user-de-
fined aggregates provide DBMS users
the same MR-style reduce functional-
ity. Lastly, the reshuffle that occurs
between the Map and Reduce tasks in
MR is equivalent to a GROUP BY opera-
tion in SQL. Given this, parallel DBMSs
provide the same computing model as
MR, with the added benefit of using a
declarative language (SQL).

The linear scalability of parallel
DBMSs has been widely touted for
two decades10; that is, as nodes are
added to an installation, the database
size can be increased proportionally
while maintaining constant response
times. Several production databases
in the multi-petabyte range are run
by very large customers operating
on clusters of order 100 nodes.13 The
people who manage these systems
do not report the need for additional
parallelism. Thus, parallel DBMSs of-
fer great scalability over the range of
nodes that customers desire. There is
no reason why scalability cannot be
increased dramatically to the levels
reported by Jeffrey Dean and Sanjay
Ghemawat,7 assuming there is cus-
tomer demand.

Possible Applications
Even though parallel DBMSs are able
to execute the same semantic workload
as MR, several application classes are
routinely mentioned as possible use
cases in which the MR model might be
a better choice than a DBMS. We now
explore five of these scenarios, discuss-
ing the ramifications of using one class
of system over another:

ETL and “read once” data sets. The
canonical use of MR is characterized

68 communications of the acm | January 2010 | vol. 53 | no. 1

contributed articles

cal tasks of increasing complexity we
think are common processing tasks
that could be done using either class
of systems. We ran all experiments on
a 100-node shared-nothing cluster at
the University of Wisconsin-Madison.
The full paper17 includes the complete
results and discussion from all our ex-
periments, including load times; here,
we provide a summary of the most
interesting results. (The source code
for the benchmark study is available
at http://database.cs.brown.edu/proj-
ects/mapreduce-vs-dbms/.)

Hadoop is by far the most popular
publicly available version of the MR
framework (the Google version might
be faster but is not available to us), and
DBMS-X and Vertica are popular row-
and column-store parallel database
systems, respectively.

In the time since publication of
Pavlo et al.17 we have continued to
tune all three systems. Moreover, we
have received many suggestions from
the Hadoop community on ways to
improve performance. We have tried
them all, and the results here (as of
August 2009) represent the best we
can do with a substantial amount of
expert help on all three systems. In
fact, the time we’ve spent tuning Ha-
doop has now exceeded the time we
spent on either of the other systems.
Though Hadoop offers a good out-of-
the-box experience, tuning it to obtain
maximum performance was an ardu-
ous task. Obviously, performance is a
moving target, as new releases of all
three products occur regularly

Original MR Grep task. Our first
benchmark experiment is the “Grep
task’” from the original MR paper,
which described it as “representative
of a large subset of the real programs
written by users of MapReduce.”7
For the task, each system must scan
through a data set of 100B records
looking for a three-character pattern.
Each record consists of a unique key
in the first 10B, followed by a 90B
random value. The search pattern is
found only in the last 90B once in ev-
ery 10,000 records. We use a 1TB data
set spread over the 100 nodes (10GB/
node). The data set consists of 10 bil-
lion records, each 100B. Since this is
essentially a sequential search of the
data set looking for the pattern, it pro-
vides a simple measurement of how

values that are not present for a given
record. Row-based DBMSs generally
have trouble with the tables, often suf-
fering poor performance. On the other
hand, column-based DBMSs (such as
Vertica) mitigate the problem by read-
ing only the relevant attributes for any
query and automatically suppressing
the NULL values.3 These techniques
have been shown to provide good per-
formance on RDF data sets,2 and we
expect the same would be true for sim-
pler key-value data.

To the extent that semistructured
data fits the “cooking” paradigm dis-
cussed earlier (that is, the data is pre-
pared for loading into a back-end da-
ta-processing system), then MR-style
systems are a good fit. If the semistruc-
tured data set is primarily for analytical
queries, we expect a parallel column
store to be a better solution.

Quick-and-dirty analyses. One disap-
pointing aspect of many current paral-
lel DBMSs is that they are difficult to
install and configure properly, as users
are often faced with a myriad of tuning
parameters that must be set correctly
for the system to operate effectively.
From our experiences with installing
two commercial parallel systems, an
open-source MR implementation pro-
vides the best “out-of-the-box” experi-
ence17; that is, we were able to get the
MR system up and running queries
significantly faster than either of the
DBMSs. In fact, it was not until we re-
ceived expert support from one of the
vendors that we were able to get one
particular DBMS to run queries that
completed in minutes, rather than
hours or days.

Once a DBMS is up and running
properly, programmers must still
write a schema for their data (if one
does not already exist), then load the
data set into the system. This process
takes considerably longer in a DBMS
than in an MR system, because the
DBMS must parse and verify each da-
tum in the tuples. In contrast, the de-
fault (therefore most common) way for
MR programmers to load their data is
to just copy it into the MR system’s un-
derlying distributed block-based stor-
age system.

If a programmer must perform some
one-off analysis on transient data, then
the MR model’s quick startup time is
clearly preferable. On the other hand,

professional DBMS programmers and
administrators are more willing to
pay in terms of longer learning curves
and startup times, because the perfor-
mance gains from faster queries offset
the upfront costs.

Limited-budget operations. Another
strength of MR systems is that most
are open source projects available for
free. DBMSs, and in particular parallel
DBMSs, are expensive; though there
are good single-node open source
solutions, to the best of our knowl-
edge, there are no robust, community-
supported parallel DBMSs. Though
enterprise users with heavy demand
and big budgets might be willing to
pay for a commercial system and all
the tools, support, and service agree-
ments those systems provide, users
with more modest budgets or require-
ments find open source systems more
attractive. The database community
has missed an opportunity by not pro-
viding a more complete parallel, open
source solution.

Powerful tools. MR systems are fun-
damentally powerful tools for ETL-style
applications and for complex analyt-
ics. Additionally, they are popular for
“quick and dirty” analyses and for us-
ers with limited budgets. On the other
hand, if the application is query-inten-
sive, whether semistructured or rigidly
structured, then a DBMS is probably
the better choice. In the next section,
we discuss results from use cases that
demonstrate this performance superi-
ority; the processing tasks range from
those MR systems ought to be good at to
those that are quite complex queries.

DBMS “Sweet Spot”
To demonstrate the performance
trade-offs between parallel DBMSs and
MR systems, we published a bench-
mark comparing two parallel DBMSs
to the Hadoop MR framework on a va-
riety of tasks.17 We wished to discover
the performance envelope of each ap-
proach when applied to areas inside
and outside their target application
space. We used two database systems:
Vertica, a commercial column-store
relational database, and DBMS-X, a
row-based database from a large com-
mercial vendor. Our benchmark study
included a simple benchmark pre-
sented in the original MR paper from
Google,7 as well as four other analyti-

contributed articles

january 2010 | vol. 53 | no. 1 | communications of the acm 69

quickly a software system can scan
through a large collection of records.
The task cannot take advantage of any
sorting or indexing and is easy to spec-
ify in both MR and SQL. Therefore, one
would expect a lower-level interface
(such as Hadoop) running directly on
top of the file system (HDFS) to exe-
cute faster than the more heavyweight
DBMSs.

However, the execution times in the
table here show a surprising result: The
database systems are about two times
faster than Hadoop. We explain some
of the reasons for this conclusion in the
section on architectural differences.

Web log task. The second task is a
conventional SQL aggregation with
a GROUP BY clause on a table of user
visits in a Web server log. Such data
is fairly typical of Web logs, and the
query is commonly used in traffic ana-
lytics. For this experiment, we used
a 2TB data set consisting of 155 mil-
lion records spread over the 100 nodes
(20GB/node). Each system must calcu-
late the total ad revenue generated for
each visited IP address from the logs.
Like the previous task, the records
must all be read, and thus there is no
indexing opportunity for the DBMSs.
One might think that Hadoop would
excel at this task since it is a straight-
forward calculation, but the results in
the table show that Hadoop is beaten
by the databases by a larger margin
than in the Grep task.

Join task. The final task we discuss
here is a fairly complex join operation
over two tables requiring an additional
aggregation and filtering operation.
The user-visit data set from the previ-
ous task is joined with an additional
100GB table of PageRank values for 18
million URLs (1GB/node). The join task
consists of two subtasks that perform a
complex calculation on the two data
sets. In the first part of the task, each
system must find the IP address that
generated the most revenue within a
particular date range in the user visits.
Once these intermediate records are
generated, the system must then calcu-
late the average PageRank of all pages
visited during this interval.

DBMSs ought to be good at analyti-
cal queries involving complex join op-
erations (see the table). The DBMSs are
a factor of 36 and 21 respectively faster
than Hadoop. In general, query times

for a typical user task fall somewhere
in between these extremes. In the next
section, we explore the reasons for
these results.

Architectural Differences
The performance differences between
Hadoop and the DBMSs can be ex-
plained by a variety of factors. Before
delving into the details, we should say
these differences result from imple-
mentation choices made by the two
classes of system, not from any funda-
mental difference in the two models.
For example, the MR processing model
is independent of the underlying stor-
age system, so data could theoretically
be massaged, indexed, compressed,
and carefully laid out on storage during
a load phase, just like a DBMS. Hence,
the goal of our study was to compare
the real-life differences in performance
of representative realizations of the
two models.

Repetitive record parsing. One con-
tributing factor for Hadoop’s slower
performance is that the default con-
figuration of Hadoop stores data in
the accompanying distributed file
system (HDFS), in the same textual
format in which the data was gen-
erated. Consequently, this default
storage method places the burden of
parsing the fields of each record on
user code. This parsing task requires
each Map and Reduce task repeatedly
parse and convert string fields into
the appropriate type. Hadoop pro-
vides the ability to store data as key/
value pairs as serialized tuples called
SequenceFiles, but despite this ability
it still requires user code to parse the
value portion of the record if it con-
tains multiple attributes. Thus, we
found that using SequenceFiles with-
out compression consistently yielded
slower performance on our bench-
mark. Note that using SequenceFiles
without compression was but one of
the tactics for possibly improving Ha-

doop’s performance suggested by the
MR community.

In contrast to repetitive parsing in
MR, records are parsed by DBMSs when
the data is initially loaded. This initial
parsing step allows the DBMSs storage
manager to carefully lay out records
in storage such that attributes can be
directly addressed at runtime in their
most efficient storage representation.
As such, there is no record interpreta-
tion performed during query execution
in parallel DBMSs.

There is nothing fundamental about
the MR model that says data cannot be
parsed in advance and stored in opti-
mized data structures (that is, trad-
ing off some load time for increased
runtime performance). For example,
data could be stored in the underly-
ing file system using Protocol Buffers
(http://code.google.com/p/protobuf/),
Google’s platform-neutral, extensible
mechanism for serializing structured
data; this option is not available in Ha-
doop. Alternatively, one could move
the data outside the MR framework
into a relational DBMS at each node,
thereby replacing the HDFS storage
layer with DBMS-style optimized stor-
age for structured data.4

There may be ways to improve the
Hadoop system by taking advantage of
these ideas. Hence, parsing overhead
is a problem, and SequenceFiles are
not an effective solution. The problem
should be viewed as a signpost for guid-
ing future development.

Compression. We found that enabling
data compression in the DBMSs deliv-
ered a significant performance gain.
The benchmark results show that using
compression in Vertica and DBMS-X on
these workloads improves performance
by a factor of two to four. On the other
hand, Hadoop often executed slower
when we used compression on its input
files; at most, compression improved
performance by 15%; the benchmark
results in Dean and Ghemawat7 also

Benchmark performance on a 100-node cluster.

Hadoop DBMS-X Vertica Hadoop/DBMS-X Hadoop/Vertica

Grep 284s 194s 108x 1.5x 2.6x

Web Log 1,146s 740s 268s 1.6x 4.3x

Join 1,158s 32s 55s 36.3x 21.0x

70 communications of the acm | January 2010 | vol. 53 | no. 1

contributed articles

did not use compression.
It is unclear to us why this improve-

ment was insignficant, as essentially
all commercial SQL data warehouses
use compression to improve perfor-
mance. We postulate that commer-
cial DBMSs use carefully tuned com-
pression algorithms to ensure that
the cost of decompressing tuples
does not offset the performance gains
from the reduced I/O cost of reading
compressed data. For example, we
have found that on modern proces-
sors standard Unix implementations
of gzip and bzip are often too slow to
provide any benefit.

Pipelining. All parallel DBMSs op-
erate by creating a query plan that is
distributed to the appropriate nodes
at execution time. When one opera-
tor in this plan must send data to the
next operator, regardless of whether
that operator is running on the same
or a different node, the qualifying
data is “pushed” by the first operator
to the second operator. Hence, data is
streamed from producer to consumer;
the intermediate data is never written
to disk; the resulting “back-pressure”
in the runtime system will stall the pro-
ducer before it has a chance to overrun
the consumer. This streaming tech-
nique differs from the approach taken
in MR systems, where the producer
writes the intermediate results to lo-
cal data structures, and the consumer
subsequently “pulls” the data. These
data structures are often quite large,
so the system must write them out to
disk, introducing a potential bottle-
neck. Though writing data structures
to disk gives Hadoop a convenient way
to checkpoint the output of intermedi-
ate map jobs, thereby improving fault
tolerance, we found from our investi-
gation that it adds significant perfor-
mance overhead.

Scheduling. In a parallel DBMS,
each node knows exactly what it must
do and when it must do it according to
the distributed query plan. Because the
operations are known in advance, the
system is able to optimize the execu-
tion plan to minimize data transmis-
sion between nodes. In contrast, each
task in an MR system is scheduled on
processing nodes one storage block at
a time. Such runtime work schedul-
ing at a granularity of storage blocks is
much more expensive than the DBMS

compile-time scheduling. The former
has the advantage, as some have ar-
gued,4 of allowing the MR scheduler
to adapt to workload skew and perfor-
mance differences between nodes.

Column-oriented storage. In a column
store-based database (such as Vertica),
the system reads only the attributes
necessary for solving the user query.
This limited need for reading data rep-
resents a considerable performance
advantage over traditional, row-stored
databases, where the system reads all
attributes off the disk. DBMS-X and
Hadoop/HDFS are both essentially row
stores, while Vertica is a column store,
giving Vertica a significant advantage
over the other two systems in our Web
log benchmark task.

Discussion. The Hadoop community
will presumably fix the compression
problem in a future release. Further-
more, some of the other performance
advantages of parallel databases (such
as column-storage and operating di-
rectly on compressed data) can be
implemented in an MR system with
user code. Also, other implementa-
tions of the MR framework (such as
Google’s proprietary implementation)
may well have a different performance
envelope. The scheduling mechanism
and pull model of data transmission
are fundamental to the MR block-level
fault-tolerance model and thus unlike-
ly to be changed.

Meanwhile, DBMSs offer transac-
tion-level fault tolerance. DBMS re-
searchers often point out that as da-
tabases get bigger and the number of
nodes increases, the need for finer-
granularity fault tolerance increases as
well. DBMSs readily adapt to this need
by marking one or more operators in a
query plan as “restart operators.” The
runtime system saves the result of these
operators to disk, facilitating “operator
level” restart. Any number of operators
can be so marked, allowing the granu-
larity of restart to be tuned. Such a
mechanism is easily integrated into the
efficient query execution framework of
DBMSs while allowing variable granu-
larity restart. We know of at least two
separate research groups, one at the
University of Washington, the other at
the University of California, Berkeley,
that are exploring the trade-off between
runtime overhead and the amount of
work lost when a failure occurs.

The commercial
DBMS products
must move
toward one-button
installs, automatic
tuning that works
correctly, better
Web sites with
example code,
better query
generators,
and better
documentation.

contributed articles

january 2010 | vol. 53 | no. 1 | communications of the acm 71

We generally expect ETL and com-
plex analytics to be amenable to MR
systems and query-intensive workloads
to be run by DBMSs. Hence, we expect
the best solution is to interface an MR
framework to a DBMS so MR can do
complex analytics, and interface to a
DBMS to do embedded queries. Ha-
doopDB,4 Hive,21 Aster, Greenplum,
Cloudera, and Vertica all have com-
mercially available products or proto-
types in this “hybrid” category.

Learning from Each Other
What can MR learn from DBMSs? MR
advocates should learn from parallel
DBMS the technologies and techniques
for efficient query parallel execution.
Engineers should stand on the shoul-
ders of those who went before, rather
than on their toes. There are many
good ideas in parallel DBMS executors
that MR system developers would be
wise to adopt.

We also feel that higher-level lan-
guages are invariably a good idea for
any data-processing system. Rela-
tional DBMSs have been fabulously
successful in pushing programmers
to a higher, more-productive level of
abstraction, where they simply state
what they want from the system, rath-
er than writing an algorithm for how
to get what they want from the system.
In our benchmark study, we found
that writing the SQL code for each task
was substantially easier than writing
MR code.

Efforts to build higher-level inter-
faces on top of MR/Hadoop should be
accelerated; we applaud Hive,21 Pig,15
Scope,6 Dryad/Linq,12 and other proj-
ects that point the way in this area.

What can DBMSs learn from MR?
The out-of-the-box experience for most
DBMSs is less than ideal for being able
to quickly set up and begin running
queries. The commercial DBMS prod-
ucts must move toward one-button
installs, automatic tuning that works
correctly, better Web sites with exam-
ple code, better query generators, and
better documentation.

Most database systems cannot deal
with tables stored in the file system (in
situ data). Consider the case where a
DBMS is used to store a very large data
set on which a user wishes to perform
analysis in conjunction with a smaller,
private data set. In order to access the

larger data set, the user must first load
the data into the DBMS. Unless the
user plans to run many analyses, it is
preferable to simply point the DBMS
at data on the local disk without a
load phase. There is no good reason
DBMSs cannot deal with in situ data.
Though some database systems (such
as PostgreSQL, DB2, and SQL Server)
have capabilities in this area, further
flexibility is needed.

Conclusion
Most of the architectural differences
discussed here are the result of the
different focuses of the two classes of
system. Parallel DBMSs excel at effi-
cient querying of large data sets; MR-
style systems excel at complex analyt-
ics and ETL tasks. Neither is good at
what the other does well. Hence, the
two technologies are complementary,
and we expect MR-style systems per-
forming ETL to live directly upstream
from DBMSs.

Many complex analytical problems
require the capabilities provided by
both systems. This requirement moti-
vates the need for interfaces between
MR systems and DBMSs that allow each
system to do what it is good at. The re-
sult is a much more efficient overall
system than if one tries to do the entire
application in either system. That is,
“smart software” is always a good idea.

Acknowledgment
This work is supported in part by Na-
tional Science Foundation grants CRI-
0707437, CluE-0844013, and CluE-
0844480. 	

References
1.	A badi, D.J., Madden, S.R., and Hachem, N. Column-

stores vs. row-stores: How different are they really?
In Proceedings of the SIGMOD Conference on
Management of Data. ACM Press, New York, 2008.

2.	A badi, D.J., Marcus, A., Madden, S.R., and Hollenbach, K.
Scalable semantic Web data management using vertical
partitioning. In Proceedings of the 33rd International
Conference on Very Large Databases, 2007.

3.	A badi, D.J. Column-stores for wide and sparse data.
In Proceedings of the Conference on Innovative Data
Systems Research, 2007.

4.	A bouzeid, A., Bajda-Pawlikowski, K., Abadi, D.J.,
Silberschatz, A., and Rasin, A. HadoopDB: An
architectural hybrid of MapReduce and DBMS
technologies for analytical workloads. In Proceedings
of the Conference on Very Large Databases, 2009.

5.	B oral, H. et al. Prototyping Bubba, a highly parallel
database system. IEEE Transactions on Knowledge
and Data Engineering 2, 1 (Mar. 1990), 4–24.

6.	 Chaiken, R., Jenkins, B., Larson, P., Ramsey, B.,
Shakib, D., Weaver, S., and Zhou, J. SCOPE: Easy and
efficient parallel processing of massive data sets.
In Proceedings of the Conference on Very Large
Databases, 2008.

7.	D ean, J. and Ghemawat, S. MapReduce: Simplified

data processing on large clusters. In Proceedings of
the Sixth Conference on Operating System Design and
Implementation (Berkeley, CA, 2004).

8.	D eWitt, D.J. and Gray, J. Parallel database systems:
The future of high-performance database systems.
Commun. ACM 35, 6 (June 1992), 85–98.

9.	D eWitt, D.J., Gerber, R.H., Graefe, G., Heytens, M.L.,
Kumar, K.B., and Muralikrishna, M. GAMMA: A
high-performance dataflow database machine. In
Proceedings of the 12th International Conference on
Very Large Databases. Morgan Kaufmann Publishers,
Inc., 1986, 228–237.

10.	E nglert, S., Gray, J., Kocher, T., and Shah, P. A
benchmark of NonStop SQL Release 2 demonstrating
near-linear speedup and scaleup on large databases.
Sigmetrics Performance Evaluation Review 18, 1
(1990), 1990, 245–246.

11.	 Fushimi, S., Kitsuregawa, M., and Tanaka, H. An
overview of the system software of a parallel relational
database machine. In Proceedings of the 12th
International Conference on Very Large Databases,
Morgan Kaufmann Publishers, Inc., 1986, 209–219.

12.	 Isard, M., Budiu, M., Yu, Y., Birrell, A., and Fetterly,
D. Dryad: Distributed data-parallel programs from
sequential building blocks. SIGOPS Operating System
Review 41, 3 (2007), 59–72.

13.	 Monash, C. Some very, very, very large data
warehouses. In NetworkWorld.com community
blog, May 12, 2009; http://www.networkworld.com/
community/node/41777.

14.	 Monash, C. Cloudera presents the MapReduce bull
case. In DBMS2.com blog, Apr. 15, 2009; http://www.
dbms2.com/2009/04/15/cloudera-presents-the-
mapreduce-bull-case/.

15.	O lston, C., Reed, B., Srivastava, U., Kumar, R., and
Tomkins, A. Pig Latin: A not-so-foreign language
for data processing. In Proceedings of the SIGMOD
Conference. ACM Press, New York, 2008, 1099–1110.

16.	 Patterson, D.A. Technical perspective: The data center
is the computer. Commun. ACM 51, 1 (Jan. 2008), 105.

17.	 Pavlo, A., Paulson, E., Rasin, A., Abadi, D.J., DeWitt,
D.J., Madden, S.R., and Stonebraker, M. A comparison
of approaches to large-scale data analysis. In
Proceedings of the 35th SIGMOD International
Conference on Management of Data. ACM Press, New
York, 2009, 165–178.

18.	S tonebraker, M. and Rowe, L. The design of Postgres.
In Proceedings of the SIGMOD Conference, 1986,
340–355.

19.	S tonebraker, M. The case for shared nothing. Data
Engineering 9 (Mar. 1986), 4–9.

20.	T eradata Corp. Database Computer System Manual,
Release 1.3. Los Angeles, CA, Feb. 1985.

21.	T husoo, A. et al. Hive: A warehousing solution
over a Map-Reduce framework. In Proceedings of
the Conference on Very Large Databases, 2009,
1626–1629.

Michael Stonebraker (stonebraker@csail.mit.edu) is an
adjunct professor in the Computer Science and Artificial
Intelligence Laboratory at the Massachusetts Institute of
Technology, Cambridge, MA.

Daniel J. Abadi (dna@cs.yale.edu) is an assistant
professor in the Department of Computer Science at Yale
University, New Haven, CT.

David J. DeWitt (dewitt@microsoft.com) is a technical
fellow in the Jim Gray Systems Lab at Microsoft Inc.,
Madison, WI.

Samuel Madden (madden@csail.mit.edu) is a professor
in the Computer Science and Artificial Intelligence
Laboratory at the Massachusetts Institute of Technology,
Cambridge, MA.

Erik Paulson (epaulson@cs.wisc.edu) is a Ph.D. candidate
in the Department of Computer Sciences at the University
of Wisconsin-Madison, Madison, WI.

Andrew Pavlo (pavlo@cs.brown.edu) is a Ph.D. candidate
in the Department of Computer Science at Brown
University, Providence, RI.

Alexander Rasin (alexr@cs.brown.edu) is a Ph.D.
candidate in the Department of Computer Science at
Brown University, Providence, RI.

© 2010 ACM 0001-0782/10/0100 $10.00

