
An Evaluation of Buffer Management Strategies
for Relational Database Systems

Hong-Tai Chou”
David J. Dewitt

Computer Sciences Department
University of Wisconsin

ABSTKACT
In this paper WC present a new algorithm,

DBMIN, fbr managing rhc hull& pool of a relational
dolahasc managcmcnl syslcm. DBMIN is hascd on a
new model 01‘ rclationol query hchavior, the query
locality set model (QLSM). Like Ihc hot set model,
the QLSM has an advantitgc over the stochastic models
due IO ils ahility to predict I‘uturc rclbrcncc hchavior.
Howcvcr, the QLSM avoids Ihc potential prohlcms of
the hot set model hy separating the modeling of rclcr-
cncc hchnvior from any particular hul’lr managcmcnt
algorithm. Al’rcr inlroducing 111~ QLSM and dcscrihing
the DBM IN algorithm, we present a pcrlormance
evalualion methodology for evaluating huflbr managc-
mcnt algorithms in a multiuser environment. This
methodology employed a hyhrid model that comhincs
lcaturcs of hoth tract driven and distrihution driven
simulation models. Using this mod& the pcribrmancc
01‘ the DBMIN algorithm in a multiuser cnvironmcnl is
compared with that of the hot set algorithm and four
more traditional huffcr rcplaccmcnt algorithms.

1. Introduction
In this paper WC prcscnl a new algorithm,

DBMIN, Ibr managing the hul‘lcr pool 01’ a relational
dalahasc managcmcnl syslcm. DBMIN is hascd on ;i

-‘Author’s current address is: Microelectronics and Computer
Technology Corporation, 9430 Research Blvd., Echelon Bldg. #I,
Austin, TX 78759.

Permksion to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for di-
rect commercial advantage, the VLDB copyright notice and the title
of the publication and its date appear, and notice is given that copy
ing is by permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, reqoires a fee and/or special permis-
&on from the Endowment.

new model of relational query hchavior, the query
locality set model (QLSM). Like the hot set model
[Sacc82], the QLSM has an advanlagc over the stochas-
tic models due lo its ahility to predict l’uturc rclcrcncc
hchavior. However, Ihc QLSM avoids the potential
problems of the hot SC’I model hy scparaiing Ihc model-
ing of rcfcrcnce hcllavior lrom any particular buffer
managcmcnt algorithm. After introducing the QLSM
and dcscrihing lhc DBMIN algorithm, the pcrlbrmancc
of Lhc DBMIN algorithm in a multiuser environment is
compared with Ihat 01‘ the hot SCI algorithm and I’our
more Iradilionul buffer rcplaccmcnt algorithms.

A numhcr 01‘ l’aclors motivated this research.
First, allhough Sloncbrakcr [SlonR I j convincingly
argued that conventional virtual memory page rcplacc-
mcnl algorithms (e.g. LRU) were gcncrally not suit;thlc
for a rclalional dattrhasc cnvironmcnl, the arca 01‘ huflbr
managrmcnt has, for the most part, hccn ignored (con-
trast Ihc activity in this arcit with that in the con-
currency control arca). Second, while Ihc hot set
results wc’rc encouraging they wcrc, in our opinion,
inconclusive. In particular, [SiiCCX2] [SaCCXS]
prcscntcd only limircd simulation results of rhc hot SCI
algorithm. WC 111 that cxtcnsivc. multiuser tests of the
hot set algorithm and conventional rcplaccmcnl policies
would provide valuithlc insighl into Ihc e&cl oF the
huffcr mllnagcr on overall s#em pcrlbrmancc.

In Scclion 2, we review carlicr work on hufl+r
managrmcnt slralcgics Ibr dalahasc systems. ‘I‘llC
QLSM and DBMIN algorithm arc dcscrihed in Section
3. Our multiuser pcrfbrmancc evaluation Of altcrni~tivc
huflcr rcplaccmcnt politics is prcscntcd in Section 4.
Section 5 contains our conclusions and suggcslions for
future rcscarch.

2. Buffer Management for Database Systems
While many 01‘ ihc early srudics on dafabasc bul?lr

managcmenl focused on the douhlc paging problem
[Fern7Xj [Lang771 [Sher7ha] [Shcr76h] (Tuel76],
rcccnl research &forts have hecn lbcused on linding

Proceedings of VLDB 85, Stockholm 127

huller managcmcnl policies 1ha1 “undcrsland” database
systems [S~onXl] and know how lo exploit 1l1c prcdicla-
hilily 01’ database rclercncc behavior. We review some
of ~hcsc algorithnls in this section.

2.1. Domain Separation Algorithms
Consider a query lhal randomly accesses records

through a B-tree index. The rool page of thr B-tree is
obviously more importani Ihan a daIa page, since it is
accessed will1 every record retrieval. Based on this
ohscrvalion, Rcilcr [Rcit7h] proposed a buffer managc-
mcnI algorithm, called the domain separation (DS)
algorithm, in which pages are classilicd into Iypes, each
ol‘ which is separately managed in its associated domain
of hullers. When a page ol’ a CcrIain type is nccdcd, a
huller is allocated from the corresponding domain. If
none arc availahlc Ibr some reason, c.g. all the buffers
in lhal domain have I/O in progress, a huller is hor-
rowed from another domain. Bullrs inside each
domain ;\rc managed hy 111~ LRll discipline. Rcitcr
suggested a simple type assignment scheme: assign one
domain IO each non-leaf level of 111~ B-Irec structure,
and one IO the Ical’ level Iogcthcr with Ihc daIrI. Empiri-
cal dala’ showed Ihal this DS algorilhm provided X-IO%
improvement in throughput when compared with an
LRU algorilhm.

The main IimiIaIion ol’ the DS algorilhm is Ihat its
conccpl of domain is sunic. The algorilhm fails IO
rcllcct the dynamics ol’ page rcrcrcnccs as rhc impor-
IanCC Of a pdgc may vary in dil’l’ercnI qucrics. ll is
ohviously dcsirahlc IO keep a daur page rcsidcnI when iI
is hcing rcpcatedly accessed in a ncstcd loops join.
However, iI is not the cast when the same page is
accessed in a sequential scan. Second, the DS algo-
rithm dots noI dii‘l~crcnriatc 111~ relative imporlancc
hclwecn diflercnt lyps of pages. An index page will he
over-written hy another incoming index page under the
DS algorithm, although 111~ index pltgc is polcnlially
more imporhnt’ than a data page in anoIhcr domain.
Memory partitioning is another potential prohlcm. Par-
titioning hufferl according IO domains, rather Ihan
queries, does not prevent interference among competing
users. Lastly, a separate rncchanism needs IO hc incor-
porated to prcvcnl thrashing sinc6 the DS algorithm has
no huilI-in l’acilitics for load control.

Scvcrul extensions IO the DS algorithm have hccn
proposed. ‘T‘hc group LRlI (GLRU) algorithm, pro-
posed hy HawIhorn (NyheX41, is similar IO DS, exCepl
that there exists a fixed priority ranking among difrerent
groups (domains). A starch for a (rcc huller always
sIarIs from 111~ group wiIh 111~ lowcsl priorily. Another

alternative, presenlcd by Ellclshcrg and tlaerdcr
[Effe84l, is to dynamically vary the size ol’ cacl1 domain
using a working-scI-like [DcnnhX] parlilioning scheme.
Under this scheme, pages in domain i which have hcen
referenced in the lasl Ti rcl’ercnccs are cxcmpl l‘roni
replacement consideration. The “working scl” 01’ each
domain may grow or shrink depending on the rcl’crcncc
behavior of the user queries. AlIhough empirical daIa
indicalcd that dynamic domain parlitioning can reduce
the numhcr of page faults (of rhc syslcm) over stalic
domain partitioning, El‘l~lshcrg and Hacrdcr concluded
IhaI Ihcrc is no convincing cvidcncc IhaI 111~ page-Iypc-
oriented schcmcs* arc disIincIly superior lo global algo-
rithms, such as LRU and CLOCK.

2.2. “New” Algorithm
In a sIudy LO lind a hcIIcr hul~lcr managemen algo-

rithm Ibr INGRES [Ston7hl, Kaplan [KaplXO] made
IWO ohscrvnlions from the rcl’ercncc paIIcrns 01’ queries:
Ihe priorily IO he given IO a page is not a properly ol’ Ihe
page itself hut 01‘ the rchnion IO which it helongs; each
rclalion needs ii “working sel”. Based on these ohser-
valions, Kaplan dcsigncd an atgoriIhm, cnttrd Ihc
“new” algorithm, in which It1c hul’lcr pool is subdivided
and attocatcd on a per-rclalion hasis. In (his “new”
algoriltim, Mach active relation is assigned a resident scI
which is inilially CmpIy. The residcnI sets 01‘ rctaIions
are linked in a priority list with a global I‘rw list on 111~
top. When ;I page IUulI occurs, a search is initialed
from the lop 01’ 1l1c priorily IisI until a suitahlc buIl’cr is
Ibund. ‘I‘hc lnulling page is Ihcn hrougl1I inIo Ihc
hulTcr and added IO the rcsidcnI SCI 01‘ 1t1c rclaIion. l‘hc
MRU discipline is cmploycd within each relation.
However, cvch rcl;IIion is c*nIitled IO one acIivc huller
whicl1 is cxcmpt l‘rom rcplacemenI consideration. The
ordering 01. relations is dclcrrnined, and may he adjuslcd
suhscqucntly, hy iI SCI ol heuristics. A rclafion is
placed near Ihc lop il‘ iIs pages are unlikely IO he rc-
used. Olherwisc, Il1c relalion is proIecIcd at Il1c hoIIon1.
Resut~s l’rom Kaplan’s simuhnion cxpcrimcnts suggcsled
Illal llic “new” algorithm pcrlolmcd much hcticr than
lhc UNIX hul’lcr manager. Howcvcr, in a Irinl irnplc-
menIalion lS1onX2], IIIC “new” algorithn1 lailcd lo
improve Itic perlorniancc or iln cxpcrimcnlat version 01.
INCRES which uscs an LRU aIgorithn1.

Ttic “new” algorilt1n1 prcscnlcd i! new ilpprOiiCll IO
huller n1;1nagcmcnt, an approach IIIUI Iracks Iilc localily
0r a query Ilirough retalions. tiowcvcr, llic algorilt~m
itself has several weak points. The USC' 01’ MRIJ is jus-
tiliahlc only in IimiIcd cases. l‘hc rules suggested hy
Kaplan for arranging 111~ order 01‘ rclalions on Ihc prior-
iIy list wcrc hascd solely on inluilion. Furlt1crn1orc,

2 l’lle 1)s ;Ilgo~-itl~n~ is c;~llrtl ;I p;tpc-l! pr-wirnled Iwllrl~ ~IIIO-

128

under high mcmorv conlcnlion, searching through a
pl-iorily lisl for a l’rci hul‘fcr can hc cxpcnsivc. Finally,
CxIending the “new” algorithm IO a multi-user environ-
mL’nl prcscnls addiilional prohlems as ir is nol clear how
lo cslahlish priority among retarions from differen!
qucrics Ihal arc running concurrently.

2.3. Hot Set Algorithm
The hoI SC’I model proposed by Sacco and Schkot-

nick [SaccX2] is a query behavior model for relational
dalahasc syslcms th.31 inlegralcs advance knowledge on
rclrcnce patlcrns inIo the model. In this model, a set
of pages over which Ihcrc is a looping behavior is called
a hot set. If ;I query is given a buffer large enough IO
hold the hoI SCIS, iIs processing will hc efiicienI as the
pages rcl&cnccd in a loop will slay in the huffer. On
Ihc oIher hand, a targc numher of page fautls may
result it ihc memory atlocaled IO a query is insufficicnl
IO hold a hoI sel. Plotring Ihe numher of page I’aulu as
a funcIion of buffer size, WC can ohscrve a disconlinuily
around the huffcr size where rhc ahovc scenario Iakcs
place. ‘l’hcre may hc scvcral such discontinuilics in ~hc
curve, each is catlcd a hot point.

In a ncsicd loops ,join in which Ihcrc is a scqucn
lial scan on both r&lions, a hoI poini of Ihc query is
Ihc numhcr of patgcs in Ihc inner rclaIion plus enc.
‘l‘he tormuta is dcrivcd hy reserving enough huI‘l?rs IO
hold Ihc CnIirc inner rclalion, which will hc rcpcarcdly
scanned, plus one huffcr I‘or Ihc oulcr rclalion, which
will hc scanned only once’. II‘, inslcad, Ihc scan on Ihe
ouIcr rclalion is an index scan, an addirionat hufl’cr is
required lor Ihc Ical. pages of lhc index. Following
similar argumcnls, Ihe hoc pinIs lor diffcrcnc qucrics
can hc dclcrmincd.

Applying Ihc pl-CdicIahiliIy of rcl’crcncc pallcrns in
qucrics, Ihe hoc SCI modct provides a more accuralc
rcferencc model tor rclalionat darahasc syslcms Ihan a
sIochasIic model. Howcvcr, ~hc dcrivalion 01‘ (hc hot SCI
model is hasCd parlially on an LRU rcplaccmcnl algo-
rithm, which is inappropriate tar certain looping
hchavior. In t&l, Ihc MRU (MosI-RcccnIly-Usc‘d)
algorithm, the opposilc IO an LRU algorithm, is more
suiIcd lor cycles of rclcrcnccs [Thor72], hccausc Ihc
mosl-rcccntly-used page in a loop is Ihc one IhaI wilt
nol he rc-accessed lor Ihe longcsi period of Iimc. Going
hack IO Ihe neslcd loops ,join cxamplc, Ihc numhcr 01
page faulls will noI incrcasc dramarically when Ihc
numhcl- of hul‘lbrs drops hclow Ihc “hoI poinI” if the
MRU algorithm is used. In Ihis rcspccl, the hot scl
mod4 does noi Iruly rctlcci rhc inhcrenl hchavior of
some rcfcrencc pallerns, but rather Ihc hchavior under
an LRU algorithm.

In the hor sci (HOT) algorithm, each quCry is pro-
vided a scparatc IisI of huffcrs managed hy an LRU dis-

ciplinc. The number of huffCrs Citch query is CnIiItcd IO
is predicted according to the hor set model. l‘hal is, a
query is given a local huflcr pool of size equal IO ils hot
set size. A new query is allowed IO enlcr Ihc syslcm if
its hoI se1 size dots nol exceed Ihc avaitahlc hullr
space.

As discussed ahove, the USC’ of LRU in Ihc hot XI
model lacks a logical justificaIion. There cxisI cases
where LRU is the worse possible discipline under tighI
memory conslrainl. The hoI se1 algorithm avoids this
prohlem hy always allocating enough memory IO ensure
Ihar references lo different dala srructurcs wilhin a
query wilt not inlcrfere with one anoIher. Thus iI tends
lo over-allocalc memory, which implies 1haI memory
may he under-utilized. AnoIhcr related prohlem is IhaI
thcrc arc reference patlerns in which LRU dots pcr-
form welt huI is unnecessary since anolhcr discipline
wirh a lower ovcrhcad can perform cquatly welt.

3. The I)HMlN Buffer Management Algorithm
In lhis seclion, wc lirsl inlroducc a new query

hchavior model, Ihc query locality set model (QLSM),
tor dalahasc syslcms. Using a classilicoIion of page
refcrcncc paucrns, WC show how lhc rcfcrcncc hchevior
of common dalahasC opcralions can hc dcscrihcd as ii
composilion ot‘ a SCI of simple and regular rclcrcncc
pallcrns. Like Ihc 1101 scl mod4 Ihc QLSkl IIas an
advanlagc over the scochaslic models due IO its ahiliIy IO
predicI tulurc rclrrencc hchuvior. Howcvcr, ~hc‘ QLSM
avoids IIIC polcntial prohlcms 01. the 1101 SC’I model hy
scparaIing Ihc modcling of retcrcncc hchavior I‘rom any
pariiculnr hul‘~Cr managCmcnI atgorilhm.

Ncxl WC dcscrihc a new hul’tcr managemcnI also-
rithm Icrmcd DBMIN hascd on the QLSM. In Ihis
algorithm, huflrs arc altocalcd and managed on a per
file instance basis. Each file inslancc is given a tocat
hul’ltir pool IO hold iIs locality set, which is rhc SC! of
1hC hull&cd paSCs asso&ICd Ihc lilt inslance. DBMIN
Can hc vicwcd as a combination of a working set algo-
rithm [DcnnhX] and Kaplan’s “new” algorithm in the
sense IhaI Ihc IoCaliIy set associalcd with each file
insIancc is similar IO Ihc working set associalcd with
each process. Howcvcr, lhc size of a locality SCI is
delcrmincd in advance, and needs noI hc re-catculaIcd
as Ihc cxeculion of the query progrcsscs. This prcdic-
tivc nalurc of DBMIN is close lo Ihal of the hor SCI
algorithm. Similar IO the WS and the hot se1 algo-
rithmj, DBMIN uses a dynamic partitioning schcmc, in

129

which 111~ IoLd numhcr of buffers assigned to a query
may vary as lilts (r&lions) are opened and closed.

3.1. The Query Locality set Model
The QLSM is based on the ohservation that rela-

tional database systems support a limited set of opera-
lions and thal the pallern of page references exhibited
by thcsc opcrarions arc very regular and predictable. In
nddilion, Ihc rcfcrencc patlern of a database operation
can hc decomposed into the composition of a number of
simple rcl?rcnce patterns. Consider, for example, an
index join wilh an index on the joining attribute of the
inner rclalion. The QLSM will idenlify two localily SclS
for this operation: one for rhc sequential scan of the
outer relation and a second for the index and data pages
of rhc inner relation. In this section, we prcscnl a lax-
onomy for classifying the page rcfcrence patlerns exhi-
hitcd hy common access methods and database opera-
lions4

Seqornti;ll Kef~rences

In ;I sequcnlial scan, pages arc referenced and pro-
ccsscd one after another. In many cases, a scqucnlial
scan is done only once without rcpelilion. For cxiim-
plc, during a sclccGon operation on an unordered rela-
lion, each page in the file is accessed exactly once. A
single page frame provides all the hufli‘r space that is
required. WC shall refer lo such a rcfcrcncc pallcrn as
straight sequential (SS).

Local rc-scans may hc ohscrvcd in the course of a
sequential scan during ccrlnin datahasc operations.
Thai is, once in a while, a scan may hack up a shorr
distance and then start I’orwnrd again. This can happen
in a mcrgc join [l3las77) in which records wilh the
same key vrrluc in rhc inner relation arc rcpcarcdly
scanned and matched wilh rhosc in I~C oulc’r relation.
We shall call this pattern of rcfcrcncc clustered
sequential (CS). Ohviously, records in a cluslcr (a SL’I
of records with the same key value) should hc kcpl in
memory at lhc! same (ime if possible.

In somc’cascs, a scqucnlial rcfcrcncc I0 a lilt nliiy

hc repeated several times. In a ncslcd loops join, for
inslance, the inner relation is,rcpcatcdly scanned unlil
the outer rclalion is exhausted. We shall call this it
looping sequential (LS) pattern. The cnlirc lilt thal is
hcing rcpcalcdly scanned should hc kcpl in memory il
possible. If the file is loo largc’lo lit in memory, an
MRU rcplaccmcnl algorilhm should hc used lo manage
rhc huffcr pool.

- ..-- .-.-. -.-- ..-.-.-._ -._
4A similar analysis or qlrery reference behavior was indepen-

dently derived in [Sacc851.

Random Hcl’erences
An independent random (IR) reference pailcrn

consists a series of indcpcndcnl ;~cccsscs. As an cxam-
pie, during an index scan through a ,non-clusuzrcd
index, the dau pages arc accessed in a random manner.
There are also cases when a localiry of reference cxisrs
in a series of “random” acccssc’s. This may happen in
the evaluation of a join in which a file with a non-
clustered and non-unique index i!; used as the inner
relation, while the outer relation is a cluslcred file with
non-unique keys. This pattern of refrcncc is icrmed
clustered random (CR). The reference hchavior of iI
CR rcfcrcncc is similar to thaw of a CS scan. II
possible, each page containing a record in a clusccr
should be kept in memory.

Hierarchical References
A hierarchical reference is a sequence of page

acccsscs that form a lravcrsal path from the root down
10 the leaves of an index. If rhc index is lravcrsed only
once (e.g. when retrieving a single ruplc), one page
frame is enough for huflcring all rhc index pages. WC
shall call (his a straight hierarchical (SH) reference.
There arc Iwo cases in which a tree lravcrsal is followed
hy a sequenGal scan through the leaves: hierarchical
with straight sequential (HEX), if rhc scan on rhc
leaves is SS, or hierarchical with clustered sequen-
tial (H/CS), olhcrwisc. Nolc rhai rhc rcfcrcncc parterns
01’ an HISS reference and an H/CS reference arc simi-
lar IO IIIOSC of an SS rcfrcncc and a CS rcfercncc,
respcclivcly.

During the cvalualion of a ,join in which ~hc inner
rclalion is indcxcd on rhc join field, repealed accesses lo
the index slructurc may hi ohscrvcd. We shall call rhis
paltern of rcfcrcncc as looping hierarchical (LH). In
an LH rcferclncc, pages closer IO kc root arc mow
likely IO hc acccsscd Ihan those closer 10 Ihe ICXWS.
The access prohahilily of an index page al level i,
assuming lhc root is al level 0, is inversely proporlional
to the ilh power of the fan-oul I’ncIor of an index page.
Thcrcl‘orc, pages a~ an upper Icvcl (which arc closer lo
~hc roo0 should have higher prioriry rhan those al’ a
lower Icvcl. In many cases, lhc root is perhaps the only
page worth keeping in memory since rhc fan-OUI Of an
index page is usually high.

3.2. DBMIN - A Huf’t’er MatIagement Algorithm
Based on the QLSM

In the DBMIN algorithm, hull&s arc dlo~akd
and managed on a per tile instance basis’. The SC1 01’

130

hul‘lcrcd pages associaicd with a lilt instimcc is rcferrcd
to as its locality set. Each iocalily scl is scparalcly
managed by a discipline selected according IO Ihe
inIcndcd usage of the lile inslance. If a huffcr conlains
:I prlgc IhaI dots not hclong IO any IocaliIy set, the
hulltir is placed on a glohal free list. For simplicity of
implcmcnlalion, WC rcslricl that a page in Ihe buffer can
hclong lo al mosl one IocaliIy XI. A lilt instance is
considcrcd Ihc owner of all the pages in iIs locality set.
‘1’0 allow for daIa sharing among concurrent queries, all
Ihc buffers in memory are also accessible through a
glohal huffcr Iahlc. The following noIalion will be used
in describing the algorithm:

N - rhc ioial numhcr of huffcrs (page frames) in
Ihe sysrem;

Iii - Ihe maximum numhcr of huffers thar can be
ailocarcd IO lilt inslancc j of query i;
ril - Ihc numhcr 01‘ huflbrs allocated IO lile inslancc
j bf query i.

NOIC thaI I is Ihe desired size for a localily scl while r is
Ihc actual size of a locality WI.

AI slat-1 up Iimc, DBMIN inilializcs Ihc global llihlc
and links all Ihe huffcrs in Ihc system on the global free
IisI. When a file is opcnc’d, ils associaicd localily WI
size and rcplaccmenl policy arc given IO rhc huffcr
manager. An emply locality WI is then iniIialized for
the tile inslancc. The IWO control variahlcs r and I
associated wirh Ihc file inslancc arc inilializcd IO 0 and
Ihc given localily scl size, rcspcclivcly.

When a page is rcqucsled hy a query, a search is
made IO 111~ glohal tahlc, followed hy an adjusImcni lo
the associated IocaliIy SCI. Thcrc arc Ihrcc possihlc
cases:

(1)

(2)

(3)

The page is t’ounrl in both the global tilble and
the loc:tlity set: In Ihis cast, only Ihc usage slalis-
Iics need IO hc updaIcd iI. necessary as dcicrmincd
hy Ihc local rcplaccmcni policy.

The page is found in memory but not in the
locality set: If the page already has an owner, the
page is simply given IO Ihc rcqucsling query and no
furIhcr acIions arc required. OIherwisc, the page
is added IO ~hc locality set of I~C lilt inslance, and
r is incrcmentrd by one. Now if r > I, a page is
chosen and rcleascd hack IO Ihc glohal l’rcc IisI
according IO the local rcplaccmcni policy, and r is
set lo I. Usage slatisiics arc‘ updated as rcquircd hy
the local rcplaccmcnc policy.

The page is not in memory: A disk read is
schcdulcd to bring the page from disk into a buffer
allocaIed from the glohal free IisI. AfIer the page
is brought into memory, proceed as in case 2.

Nolc IhaI IIIC local rcplaccmenl politics associalcd wiIh
file inslances do not cause actual swapping of pages.
Their real purpose is to mainlain Ihc image of a query’s
“working set”. Disk reads and wriIcs are issued hy lhc
mechanism thaI maintains the global tihlc and the glo-
bal free lisl.

The load conrrollcr is aclivated when a file is
opened or closed. ImmediaIely aller a lile is opened,
the load controller checks whelhcr \3\‘lii < N for all

i,l ’
active queries i and their lilt inslances j. If so, the
query is allowed IO proceed; olhcrwisc, iI is suspended
and placed aI Ihc fronI of a waiting queue. When a lilt
is closed, buffers associated wiIh iIs locality seI are
released hack IO the glohal free IisI. The load conlroller
Ihen acIivaIcs Ihc firsI query on the waiting qucuc if this
will not cause Ihe above condition IO hc violated.

WhaI remains IO hc dcscribcd is how Ihc QLSn4 is
used to sclccr local replaccmcnl politics and cslimaIc
sizes for I~C locality sels of each lilt inslance.
Straight Sequential (SS) References

For SS rcfcrcnccs lhc IocaliIy scl size is ohviously
I. When ;I rcqucsicd page is nol found in Ihc hufltir,
Ihc page is I’crchcd from disk and ovcrwrilcs whalevcr is
in Ihc huI’l.cr.
Clustered Sequential (CS) References

For CS rcl’crcnces, if possihlc, all mcmhcrs of a
cluslcr Ii.c. records wiIh ~hc same key) should hc kepl
in memory. Thus, 111~ IocaliIy WI size equals the
numhcr of records in ~hc Iargcst clusIer divided hy Ihe
blocking IacIor (i.e. ~hc numher of records per page).
Provided 1l1a1 enough space is allocaIcd, FIFO and LRU
hoIh yield IIK minimum numhcr 01‘ page laul~s.
Looping Sequential (125) References

When II lilt is being rcpcaccdly scanned in an LS
rcfcrcncc pallcrn, MRU is Ihc hcsi rcplacemcnI algo-
rilhm. II is hcnclicial IO give 111~ file as many hufkrs
as possihlc, up IO the point whcrc 111~ cnIirc file can fiI
in memory. Hcncc, Ihc IocaliIy SCI size corresponds IO
lhc IOI~I numhcr of pages in 111~ lilt.
independent Random (IR) References

When the records 01. a lilt arc hcing randomly
acccsscd, WY through a hash Iahlc, Ihc choice 01' a
replaccmeni algorilhm is immalcrial since all lhc algo-
rilhms Frlorm equally well [King71]. Yao’s formula
IYao77], which cslimalcs Ihc lotal numhel- of pages
rdcrcnccd b in a series of k random record accc’ssc’s,
provides an (approximate) upper hound on Ihe locality
scl size. In Ihosc cases whcrc page rel’erenccs al-e
sparse, Ihcrc is no need IO keep ;i page in memory af‘~r~
ils initial refcrencc. ‘l‘hus, tlic.rc art% Iwo rcasonairli
sizes lor the locality SCI, I tend b, dcpcllding on the
likelihood Ihal each page is rc-rcl?rcnccd. For exam-

131

Far hoIll SH Nld H /SS rcl?rwccs C’iIcll itldcx pgc
is twcrs~d onI! once’. I‘llUS IIlL’ IOCillil~ SCI siz\: 01
CSC~ is 1 illld iI single h~lll?r page is iill [l1;11 is nocdcd,
The discussion 011 CS rcltircnces is :tpplic;\hlc IQ H/CS
rL’fCrc*nCc’S, CxC~‘pl Ihal ~;~cli mcmh~r in ;I CluSlcr is noi\
:I kc%y-poinlcr pair ralllcr lh;m iI d;ll;b record.

IBoping Hierarchic:rl (1.H) Reft,rrncrs

In 311 LH rcl’crum, ;in index is rup.Wc~dly
Ir,avcrscd I‘roill IllC root IO IIIC ICUI ICVCI. In SllCll :I
rcfvrc‘iicc, pi\gcs nc’;Ir 111~ roa :IrC mow likely 10 hc
accessed Illiill IIKW ;II 111~ holIon [Rcil7hJ. Considu iI
Irc‘c‘ ol’ Ilciglil I1 ilnd will1 :I Im-oul lilClOr f, \Villioul
loss 01’ gcn~wlily, ;issumc ilic trc’c is coniplc‘~c. i.e.

cuch non-Ical’ node has f sons. Durillg SKI\ trtl\‘~rsill
Ironi lllc root ill ICVCI 0 IO il IClll’ rll ICVCI Il. pnc 0111 Ol
111~ ti paps rti ICVCI i is rcrcrcnccd. ‘I’lwrclbrc‘ pip’s dl
an uppu lcvcl (which arc clowr lo Ilic root\ arc mnrc
imporlanl Illan IllOSC ;I1 it lower ICVCI. Cons~qiicnlly. ill1
idcal rcplvccmcnl ;Ilgorirhm ShotlId kc~p \h~ i\cIivC
p;lscs 01’ 111~ upper lcvcls ol’ iI Irc’c rcsidcnl iII\Q williplcx
ilic ITSI 01’ 111~ pages in ;I scr:rich hul’l?r. 1’1~ CCwCcpl 01
"rcSidu;~l Y;~~IIC” (dclincd I’or lhc IR rckrcncv pllcrn I
can hc llscd ,IO CsIilll;\IC Ilow many IOTIS SIICVII~ hc LCpl
in memory. i LCI l>i hen 111~ numhcr Ol’ p~gcS ItCCSSSCd ill
lcvt~l i ;IS es inl:lIcd hy j’;lO’S formtllii. ‘i’hr\ sift of 111~’

1
Ioc:tIily SCI can hc ;rpproximaicd hy (1 -t 4 bl)-+ I,

i I

whew j is IllC lilrL$!SI i SllCll ?Il:ll
k bi
- > p. In ni:iny

bi
CiIscs, II~C root is WrhupS Ihc only piIgC worth kcvping
in nicmory, SinCc 111~ (iIn-oIII I$;III index PiIgC iS USII-
ilIly lligh. II’ ihis is irklc’, Ilic LIFO iilgori~hm Wld 3-J
hufltirs nlay dc’livcr ;I r~itsotl:Ihl~ ICVCI 01’ pcrl’orniancc
iiS 111~ rool is ;~l\\xys kcpl in nicniary.

In this scclion. 1,~ cc\nip;irc Ilic ~rlorm:mcc 01.
111~ DBhl II\: ;~Igori~h~~l \vilh 111~ 1101 WI :~~gorilhlll ;llld

Ibur oljjcr huff~r n~;ln;~~Cn~~nl SlrillCgitJS in ;I mtilliiis~~r
cnvironmcnl. l‘hc scclioli hcgins hy dcscrihing 111~
mclliodology used tbr 111~ c\.aluitlion. N~xl, implcmcn-
I;tlion ~i~~i~ilS of' 111~ six hul’fcr nl;lll;lgc'nl*lll ;llgorilllnls

lcslc~d LlrC prCscnlCd. Fin;llly, 111~ I'C'SIIIIS 01‘ s@nlc' 01

our CxprimCnls arc prcscnlcd. For ;I IIJ~JI c co~nplc~c
prcscnl;~lion 01’ OIIV rcsulls. 111~ inlcrcstCd rt*;idk,r should

CXitlllillC (CllOllll.~ I.

Tlicr~ \VCW llll’~T Cll&xY ICrr C\~~llllillill~ IIIC diI’-
l?rcnl hul’l’cr mim;~gl~m~~ll al~orilIlms: dirvt*l nl\~;tsurc-
nwnl, an;ilyiic;ll mod~~liilg. :III~ siniulnlioii. Dirccl
nicwrcnicni, illlll@ll~ll I'hsildc, \\;ls c‘limii~:llcd ;IS IO0
conlp~~l~ilionally cxpwsi\c~. An;llvlic modclillg. while
quilt CW-ClTCclivc‘, silllpl\. co111,i 1101 niodcl llw dil~fcrcwl
ulpritlinis iii sulliciciil dcl;iil \\liilc hoping 111~ solu-
li@nS lo Ihc‘ cqu;ilionS imi;thlc-. ConsCqu~iill~, wc
CIIOOSC siwil;lricw ;IS lllc Iusis l’or 011r CVill~l;~li~~ll,

l‘\w lyp3 ol’ simul;llions ;IIY \\idcl!, used [Sh~~r7.3]:
trace driwl simnhtions which arc driven try I~XC‘S
rccordcd I’rom ;I rc;\l S+LW. ;~iid distribntion ririvrtl

silil ahlions in which C'\LWIS arc g~vlcrakd hy ;I wndom
prows uilh ccrlain sl0cll;tslic slrIicItir~. .A tr:icc drivc)n
IllOdCl IlaS SC\Cri\l iId\ 311I;l$L'S, including crcJilahilil!
and liw \\OrhloiiJ cll;lr~~~l~riz;t~iorl which cnahlcs stlhllc
corrclalioiis 01’ cwnls IO Iw prcscr\c4. Howwc~~. sclcct
ing ;I "r~~~rcsclil:lli\~~" wcwhlo;rd ic diflicull ii) many
CiISc'S. l~~irlli~rnicw, il is Il;lrJ In Cll;lrilClCliZC IllC
inlcrfcrcncc ;iiiJ corr~l:ilion h~~~\\~~vi concurrcnl ;iclivi-
lies in ;I mulliuscr cn\.irwm~wI w II~;II IIIC wax dau
c;ln hc proprly IrtitlCJ ill ;III ;IIIC~CCI model with ;I &I’-
I:rcnl COllli~~lrilliOn. ‘1’0 ;n&l II~LW prohlcms, \\c’
dcsigucd ;I hybrid simal;ltion model Ill:11 coml~inc~s
I’~;ltllr~*S 01’ hoIll Irilcc (11 ivcrl ;mJ dislrihulion driww

lllodcls. In Ihis hybrid mod~4, 111~ hchwicw 4’ I*~~cII
iljdividli;ll query iS J~SL ribcxi hy ;I Ir;lW siring. illld IllC
SySl~m \vnrhloi~d is JyIl;IInic;IIl~ s!lllllcsizctJ hv inL-rging
Illc IrilcC Slrinp 01’ 111~~ coiictirrt%lly ~xCCuliilg qlricrics.

,Anolll~r Conipn~lil irl‘ 0111' silllltlilliOll niodcl is :I

simul;wr l’or d;~l;~h:\w SVSICIIIS which nl;~;~gcs II~IXY
iniprl;inI rc5oIirccs: Cl’l1, ;in I/O dcvicL>, and mcmol-y.
\Vlicn ;I 11kv qrkvy ;wi\LY, ;I lo;iJ coiitrollcr (il’ il taxisIs
dccidcs. Jcpnding (rn 111~ ;wail;~hilily nl’ 111~ I'CSCNII'CC'S ;\I

IIlL- linic, \vli~*llicr lo ilCli\ill~ or JL~l;l~ IIIC qiicry. Al’lCr 3

qllc*ry iS ;IClivalc*d, iI circul;llc~s in ;I loop hwxcn 111~
Cl’ll iIl\d ;III I/O dcvicc IO Conl~l~ 1.01' rc'soiirccs unlii il

lin ishcs, Al’lw ii qiiory Icrniin;il~s. ;inolliCr new ql1cr.V
is gcncralsd hy ~lle \vorklo;\d model. An active cI~IL"~v.
l1owrvct', may he tcmpr;trily stlspwdcd hy 111~ Inad

1 j

controller when the condition of over-loading is
dctccfcd.

Although the page fault rate is frequently used to
mcasurc lhc performance of a memory managemcnl
policy, minimizing the number of page faults in a
multi-programmed environment does not guarantee
optimal system behavior. Thus, throughput, measured
as the average number of queries completed per second,
was chosen as our performance metric. In the follow-
ing sections, WC shall describe three key aspecls of’ the
simulation model (Figure I): workload charactcriza-
lion, configuration model, and performance measure-
menl.

41.1. Workload Synthesis
‘l’hc first step in developing a workload was IO

ohlain single-query (race strings hy running queries on
~hc Wisconsin Storage Syslcm’ (WiSS) [Chou83].
While WiSS supports a numher of sloragc structures
and Iheir related scanning operalions, WiSS does not
directly support a high-level query interlace; hence, Ihc
lest queries were’ “hand coded”. A synrhclic darahasc
[Bitt831 with a well-dclincd distrihulion slructurc, was
used in the experiments. Scvcral types of’ events were
recorded (with accuratr timing inl’ormalion) during the
execution of each query, including page accesses, disk
I/O’s, and file operations (i.e. opening and closing of
files).

A trace string can he vicwcd as an array or cvcnl
records, each of which has a tag licld lhal idcntilics lhc
~ypc OF ihc cvcni. Thc*rc arc six imporranl c’vcnt ~ypcs:

Workload Model - Trace Slrings .I

Configuration Model - Dutahasc System Simulator -I
1 _-___--

Performance MeasuremcnI - Throughput

A Simulalion Model lor Da~ahasc Syslcms
Figure 1

page read, page write, disk read, disk write, file open,
and file close. Disk read and write events come in pairs
bracketing the time interval of a disk operation’. The
corresponding record formats in the trace string are:

Page read and write

page read / write file ID page ID time stamp

Disk read and write

disk read / write file ID page ID time stamp

File open

file open lile ID locality set size replacement policy

File close

file close lile ID

The time stamps originally recorded were’ real (elapsed)
times of the system. For reasons IO be explained later,
disk read and write events were removed from rhe
trace strings, and the time stamps of other events were
adjusted accordingly. In essence, the time scamps in a
modilied trace string reflect the virtual (or CPU) times
0r a query.

Since accurate timing, on the order of 100 micro-
seconds, is required IO record the events at such
detailed level, ihc tracing wc’rc done on a dcdicaled
VAX-I l/750 under a very simple operating kernel,
which is designed for Ihc CRYSTAL muhicompu~er
system [DcWiX4]. To reduce Ihc overhead of’ obtaining
the lracc strings, events wcrc’ recorded in main memory
and written IO a file (provided hy WiSS) after tracing
had ended.

In the multiuser hcnchmarking methodology
described in [BoraX4J, three lhctors that affect
throughput in a multiuser environmcnl were identified:
the numhcr oi‘ concurrcnl queries’, the degree of dau
sharing, and the query mix.

The numhcr 01‘ concurrent queries (NCQ) in each
of our simulalion runs was varied from 1 IO 32. To
study ihc effects of data sharing, 32 copies of the tcsl
datiihasc were replicated. Each copy was stored in a
separate portion of the disk. Three levels 01‘ data shar--
ing wcrc dclincd according IO the average numhcr of

concurrent queries accessing a copy of the datahasc:

(1) full sharing, all queries xccss lhc same dab
hasc;

(2) hall. sharing, cvcry IWO queries share a copy 01‘

rhc dalahasc; and

(3) no sharing, every query has its own Copy.

s The vet-sion of WiSS used for gathering the trace string+
does nor overlap CPU and I/O execution.

” The term, multiprogramming level (MPL), wa> used 111
(BoraS41. However, since it is desirable to distinguish the external
worhload condition from the internal degree of multiprogramming,
“number of concurrent queries” (NCQ) is used here instead. (1~~
ing our definitions, MPL 5 NCQ under a buffer manager wirh
load control.

133

The approach to query mix selection used in [Borag4]
is based on a dichotomy on the consumption of two sys-
tem resources, CPU cycles and disk bandwidth. For
this study, this classification scheme was extended to
incorporate the amount of main memory utilized by the
query (Table 1). After some initial testing, six queries
were chosen as the base queries for synthesizing the
multiuser workload (Table 2). The CPU and disk con-
sumptions of the queries were calculated from the
single-query trace strings, and the corresponding
memory requirements were estimated by the hot set
model (which are almost identical to those from the
query locality set model). Table 3 contains a summary
description of the queries.

At simulation time, a multiuser workload is con-
structed by dynamically merging the single-query trace
strings according to a given probability vector, which
describes the relative frequency of each query type.
The trace string of an active query is read and pro-
cessed, one event at a time, hy the CPU simulator when
the query is being served by the CPU. For a page read
or write event, the CPU simulator advances the query’s
CPU time (according to the time stamp in the event
record), and forwards the page request to the buffer
manager. If the requested page is not found in the
buffer, the query is blocked while the page is being
fetched from the disk. The exact ordering of the cvcnls
from the concurrent queries are determined hy the
behavior of the simulated system and the time stamps
recorded in the trace strings.

Query CPU Usage Number of Hot Set Size
Number (seconds) Disk IO’s (4K-pages)

I .53 17 3
II .67 99 3
Ill 2.95 53 5
IV 3.09 120 5
V 3.47 55 17
VI 3.50 138 24

Representative Queries
Table 2

4.1.2. Configuration Model
Three hardware components arc simulated in the

model: a CPU, a disk, and a pool of buffers. A
round-robin scheduler is used for allocating CPU cycles
to competing queries. The CPU usage of each query is
determined from the associated trace string, in which
detailed timing information has been recorded. In this
respect, the simulator’s CPU has the characteristics of a
VAX- I 11750 CPU. The simulator’s kernel schedules
disk requests on a first-come-first-serve basis. In addi-
tion, an auxiliary disk queue is maintained for imple-
menting dclaycd asynchronous writes, which are ini-
tiated only when the disk is ahout to become idle.

The disk times recorded in the trace strings tend to
be smaller than what they would he in a “real” environ-
ment for two reasons: t 1) lhc datahasc used in the trac-
ing is relatively small; and (2) disk arm movements are

Query Classification
Table 1

A,B: 10K tuples; A’: 1K tuples; B’:300 tuples; 182 bytes per tuple.

Description of Base Queries
Table 3

134

uwally less Ircqtrt.nl on a single user system liian in a
niulliuscr environmcnl. Furthcrmorc, rcqucsls Ibr disk
opcr:rrions arc affcclcd hy the operating conditions and
rhc hull’cr mnnagcmcnI algorithm used. Therefore, Ihc
dish Iimcs recorded were replaced hy a slochasdc disk
model, in which a random process on disk head posi-
tions is ussumed. In the disk simulalor, the access lime

of’ a disk operation is calculated from the timing specifi-
calions of’ a Fujitsu Eagle disk drive [Fuji82]. On Ihe
average, it lakes about 27.6 ms lo access a 4K page.

The buffer pool is under the control of the buffer
manager using one of the buffer managcmenl algo-
riIhms. However, the operating system can fix a buffer
in memory when an I/O operation is in progress. The
size ol’ the huffcr pool for each simulation run is deler-
mined hy the formula:

xpitilli

x. .i-

TPiti
I

where pi is Ihc ith elcmcnl 01‘ Ihc query mix prohahilily
vecIor and ti and hi are Ihc CPLI USI& and lhc hol XI
size 01. query i, rcspcclivcly. The inlcnl was lo saluralc
the memoI-y ;)I ;I load 01. eight concurrcnl qucrics so Ihal
~hc cl.lccI ol’ overloading on ~rlormancc under dil’l’crcnI
huller managcmenl algorilhms could hc ohscrvcd.

3. 1.3. St:rtistic;ll Validity of’ I’ertbrm;~r~rr Mr;tsurr-
mrnts

ljiilcll means (Sarg7hl \&IS SClCClCd iiS the mcrhod
lor cstim;rIing conlidcncc inlcrvals. ‘1’11~ numhcr 01’
huichcs in cuch simulalion run w;ts SCI IO 20. Analysis
01 IIIC rhroughpuI mcasurcmcnIs indicates IhaI many 01’
Ihc conlidcncc inIcrvals ICII wiIhin I’,; 01. rhc mean.
For those cxpcrimcnrs in which thrashing occurred, Ihc
IcngIh ol ;i hitlch \vas extended lo cnsurc’ Ihal alI conli-
dcncc inlcrviils wcrc within 5’; 01‘ Illc mc;rn.

4.2. Iluff’rr Management Algorithms

Six huI‘l?r m:rnagcmcnI algorilhms, divided into
wo groups, wcrc included in the cxpl-imcnls. ~I‘llC
Iif-st croup consisled 01‘ rhrcc simple algorithms: KAND, c
FIFO, and CLOCK. ‘l‘hcy wcrc chosen hccausc they
arc’ typical replaccmen~ algorithms and ;irc easy IO
implcmcnt. II is inlcrcsling lo compare their pcrlor-
mancc wilh lh;rI 01‘ ~hc more sophislicitted algoriIhms 10
see ii’ 111~ added complexity 01‘ ~hcsc irlgorilhms is war-
ranled. Bcsidc DBfUlN, WS (the working scl algo-
rithm), and HOT (Ihe hoI se1 algoriIhm) wcrc included
in Ihc second group. WS is one of the most eflicicnl
memory policies Ibr virtual memory sysccms [Denn7X].
II is inlriguing lo know how well it pcrlorms when
applied !o darahase syslcms. The hoI sel algorithm was

chosen IO reprcscnl rhc nlgoriIhms Ihal have previously
hccn proposed i’or dutahase systems.

All the algorithms in rhc iirsr group are glohal
algorithms in the sense thaI the rcplacemcnl discipline
is applied globally LO all the hullers in the system.
Common to all three algorilhms is a global Iahle thaI
conlains, for each buffer, the identity of the residing
page, and a flag indicating whether the buffer has an
I/O operation in progress. Additional data structures or
ilags may be needed depending on the individual algo-
rithm. Implementations of RAND and FIFO are rypi-
cal, and need no further explanation. The CLOCK
algorithm used in the experiments gives preferential
lrealmcnl to dirty pages, i.e. pages that have been modi-
lied. During the first scan, an unreferenced dirty page
is scheduled for wriring, whereas an unreferenced clean
page is immcdialely chosen lor replacement. If no suiI-
able hufrer is found in rhc firs1 complcrc scan, dirty and
clean pages are trcalcd equally during Ihe second scan.
None of Ihc Ihrcc algorithms has a built-in facility for
load control. However, we will investigate later how a
load conIrollcr may he incorporated and whal its effects
are on Ihc pcrlormancc of Ihcsc algorithms.

The algorithms in the second group arc all local
policies, in which rcplaccmenI decisions arc made
locally. ‘l’hcrc is ii local Iahlc associaled with each
query or lilt insluncc lor niainlrlining iIs I-csidcnt scI.
Bul’fcrs Ihar do noI hclong LO tiny rcsidcnI set arc placed
in ii global LRll IisI. ‘1’0 iillo\v for daU sharing among
concurrcnl queries, a glohiil tahlc, similar lo Ihc one for
the glohiil irlgorilhms, is also mainIuincd hy each 01‘ ~hc
IOCijI algorilhms in the second group. When a page is
rcqucslc%l, Ihc global Iahlc is scarchcd IirsI, and then
Ihe approprialc local Iithlc is ad,juslcd if necessary. AS
iill oplimizalion, :in asynchronous wriIe operarion is
~~hedulcd whcncvcr a dirIy page is released hack IO rhc
glohul Ircc IisI. All three algorithms in Ihe second
group hasc Ihcir load control on ~hc IesIimirced) memory
demands of the suhmillcd qucrics. A new query is
acIivaIcd il‘ Ihcrc is sul‘licicni I‘rcc space 1~1‘1 in the sys
(cm. On Ihc olhcr hand, an iicIivc query is suspcndcd
when over-commimicnI 01‘ main rncmory hiis hcen
deleclcd. WC ;rdopIed the dcaclivalion rule implcmcnIed
in the VhJOS opcraling sysl~m [Fogc74j in which llic
IlrulIing p~.occss (i.c. IIIV process Ihat was iisking l01

more memory) is chosen for suspension I’). In Ihc 1’01
lowing scclion, WC discuss implcmcntiGon decisions
thaI iirc pcrlincnl IO each individual algorirhm in lhc
second group.

‘135

Working Set Algorithm
‘I‘0 make WS more competitive, a Iwo-parameler

WS algorithm was implemented. That is, each process
is given one of the Iwo window sizes depending on
which is more advantageous to it. The Iwo window
sizes, 71 = lOms and 72 = ISms, were determined
from an analysis oi’ working SCI f’unctions on the
sin&-query tract! strings. Inslead of computing the
working se1 of’ a query aficr each page access, Ibe algo-
rithm rc-calculaics Ihe working se1 only when the query
encounlers a page fauh or has used up iIs current time
quantum.

Hot Set Algorithm
The ho1 se1 algorithm was implemcnlcd according

IO Ihc oullinc dcscrihcd in [Sacc82]. The ho1 se1 sizes
associalcd with the base queries were hand-calculated
according to the hot ser model (see Tahle 2 ahovc).
They were then stored in a lablc, which is accessible IO

the buffer manager al simulation lime.

DBMIN Algorithm
The locality set size and Ihe rcplaccmcni policy for

each file instance wcrc manually dclermincd. They
wcrc then passed (by the program thai implemented the
query) to the trace string recorder al the appropriate
poin1s when Ihc single-query trace srrings were
recorded. AI simulalion lime, the DBMIN algorirhm
uses the inf’ormation recorded in rhc lracc strings to
determine the proper rcsidcnl XI size and rcplaccmcn1
discipline for a file inslance 31 Ihc lime the lilt is
opened.

4.3. Simulation Results
Although comparing Ihc pcrlbrmancc of’ the algo-

rithms tbr different query types provides insighl inlo lhc
efficiency of’ each individual algorilhm, i1 is more
interesling IO compare their perl’ormancc under a work-
load consisring of a mixture of’ query lypes”. Three
query mixes were defined lo cover a wide range 01
workloads:

M 1 - in which all six query types are equally likely
IO he requested;

M2 - in which one of’thc Iwo simple qucrics (I and
II) is chosen hall’ the lime;

h43 - in which the IWO simple qucrics have a com-
hincd prohahility of 75% .

The specific probahilily dislrihutions for the three query
mixes is shown in Tahlc 4.

~~

(in ‘8,)

Composition of Query Mixes
Table 4

The lirst SCI of L~SIS were conducted withou1 any
daIa sharing herween concurrcnUy executing queries.
In Figure 2, the throughput for the six buffer manage-
men1 algorithms is presented for each mix 01‘ queries.
In each graph, the x axis is Ihe number of’ concurrcnl
queries (NCQ) and the y axis is the throughput of Ihe
sysIem measured in queries per second. The prcsencc
of thrashing i’or the Ihree simple algorithms is cvi-
den1”. A rclarivcly sharp dcgradalion in performance
can he ohservcd in mosI casts. RAND and FIFO
yielded 1hc worsl perlormancc, allhough RAND is
perhaps more s1ahlc Ihan FIFO in Ihc scnsc’ Ihan i1s
curve is slighlly smoolhcr Ihan 1ha1 of‘ FIFO. Bcfbrc
severe Ihrashing occurred, CLOCK was generally hctIcr
than horh RAND and FIFO.

WS did nor perfbrm well hccnusc i1 failed IO cap-

ture Ihc main loops of’ Ihc joins in queries V and VI.
IIS performance improved as the frequency of’ qucrics V
and VI decreased. The cl’licicncy of’ 111~ hoI SCI algo-
rilhm was close lo Ihal of DBMIN. When lhc syslcm
was lightly loaded, DBMIN was only marginally hcIIcr
than Ihc rcsl of rhe algorilhms. However, as rhc
number 01‘ concurrenl qucric’s increased IO 8 or more,
DBMIN provided more Ihroughpul than ~hc hot SCI
algorithm hy 7 lo 1.3 !;i ” and Ihc WS algorirhm hy 25 IO
45% - .

Effect of Datit Sharing
To sIudy ~hc cf’licrs of daIa shuring on ~hc pcrfor-

mancc 01’ ~hc algorithms, IWO more sets 01‘ cxperimcnls,
each wiIh a dil’fcrcnl dcgrcc of daIa sharing, wcrc con-
ducIcd. The rcsulIs ;irc ploIIcd in Figures 3 and 4. II
can hc ohscrvcd Ihal, Ibr c~h of’ lhc algorithms, the
IhroughpuI increases as ~hc dcgrcc of‘ daIa sharing
increases. ‘l‘his reinforces 111~ view IhaI allowing for
data sharing among concurrcnl queries is imporlanl in a
mulli-programmed daIahitSe syslcm [Rei17hj [BoraX4j.

136

THROUGHPUT ---- RAND
0.50 -- - - FIFO

.-.-.-. CLOCK
.--- ws
. _.____ HOT

0.40 - DBMIN

0.30 jyzz

0.20 -- \,
-1. ‘.-‘-~-- - \-- m--.----1

\

-.

.

I
-. 0.10

0.00 1 : NCQ
&ERY~ MIX~MI $00 I~BUFFES.~NQ~ IEA ZikINc)

THROUGHPUT
0.50

0.40

0.30

0.20

0.10

0.00 : NW

THROUGHPUT

: NCQ

THROUGHPUT ---- RAND
0.60 - - FIFO

- -.-- CLOCK
---- ws
--...._ HOT

0.50 _ DBMlN

0.40 --*---- -_.____ . /.-..\ -- _____- I*--.
0.30 <G;* ‘y-,

..__----- ___.. --_ --___
0.20 IT - “\+.-\-*

\ L-w- -_----__
‘--=y

THROUGHPUT
0.60 _-

NCQ

THROUGHPUT
0.60

: NCQ

The relative performance of the algorithms for half
dau sharing is similar to that for no data sharing.
However, it is not the case for full data sharing. For
query mixes M 1 and M2, the efficiencies of the dif-
ferent algorithms were close. Because every query
accessed the same copy of the database, it was easy for
any algorithm to keep the important portion of the
database in memory. With no surprises, RAND and
FIFO performed slightly worse than other algorithms
due to their inherent deficiency in capturing locality of
reference. For query mix M3, however, the perfor-
mance of the different algorithms again diverged. This
may be attributed to the fact that small queries dom-
inated the performance for query mix M3. The “work-
ing” portion of the database becomes less distinct as
many small queries are entering and leaving the system.
(In contrast, the larger queries, which intensively
access a limited set of pages over a relatively long
period of time, played a more important role for query
mixes Ml and M2.) Therefore, algorithms that made
an effort to identify the localities performed better than
those that did not.

Effect of Load Control
As was observed in the previous experiments, the

lack of load control in the simple algorithms had led to
thrashing under high workloads. II is interesting to find
out how effective those algorithms will be when a load
controller is incorporated. The “50% rule” [Lero76],
in which the utilization of the paging device is kept busy
about half the time, was chosen partly for its simplicity
of implementation and partly because it is supported hy
empirical evidence [Denn76].

A load controller which is based on the “50%
rule” usually consists of three major components:

(1) an estimator that measures the utilization of
the device,

(2) an optimizer thar analyzes the measurements
provided by the estimator and decides what load
adjustment is appropriate, and

(3) a control switch rhar activates or deactivates
processes according to the decisions made by the
optimizer.

In Figure 5, the effects of a load control mechanism on
the three simple buffer management algorithms is
shown. A set of initial experiments established that
throughput was maximized with a disk utilization of
87%. With load control, every simple algorithm in the
experiments out-performed the WS algorithm. The pr-
formance of the CLOCK algorithm with load control
came very close to that of the hot set algorithm. How-
ever, the results should not be interpreted literally.
There are several potential problems with such a load

THROUGHPUT
0.80 J-

0.70 --

0.60 --

0.50 --

---- RAND
- - FIFO

-.-- CLOCK
.-.- ws
____... HOT
- DBMIN

0.20 1 l : : NW

c&~y411rx L (i200 BI&mF& I-CL iZiT*Yauu~G)

THROUGHPUT
0.80

THROUGHPUT
0.80 t

0.70

0.60

0.50

0.40

138

THROUGHPUT 0.50 J- ---- RAND
FIFO

:-.:a. C,,OCK
.-.- ws

0.40
_..____ HOT
- DBMIN

0.30 ::

0.20 -- ~~~~ ‘-_ . . --Pm\- ---..-----..

0.10 --

THROUGHPUT
0.50 f

Figure 5

control mechanism which arise from the feedback
nature of the load controller:

(I) Run-time overhead can be expensive if sampling is
done too frequently. On the other hand, the
optimizer may not respond fast enough to adjust
the load effectively if analyses of the measurements
are not done frequently enough.

(2) Unlike the predictive load controllers, a feedback
controller can only respond after an undesirable
condition has been detected. This may result in
unnecessary process activations and deactivations
that might otherwise be avoided by a predictive
load control mechanism.

(3) A feedback load controller does not work well in
an environments with a large number of small
transactions which enter and leave the system
before their effects can be assessed. This effect
can be seen in Figure 5 as the percentage of small
queries increases. Note that the so-called “small
queries” (i.e. queries I and II) in our experiments
still retrieve 100 tuples from the source relation.
The disadvantages of a feedhack load controller are
likely to become even more apparent in a system
wilh a large number of single-tuple queries.

5. Conclusions
In this paper we presented a new algorithm,

DBMIN, for managing the huffcr pool of a relational
database management system. DBMIN is based on a
new model of relational query behavior, the query
locality set model (QLSM). Like the hot ser model,
the QLSM allows a buffer manager to predicl fulure
reference hehavior. However, unlike the hot set model,
the QLSM separates the modeling of referencing
behavior from any particular buffer managemenl algo-
rilhm. The DBMIN algorithm manages the huffer pool
on a per file basis. The number of huffers allocated to
each file instance is based on the locality set size of the
file instance and will varies depending on how the iile is
being accessed. In addition, the buffer pool associated
with each file instance is managed hy a replacement
policy thal is tuned to how the file is heing acccsscd.

WC also prescntcd a performance evalualion
methodology for evalualing buffer managcmenl algo-
rithms in a multiuser environmenl. This methodology
employed a hybrid model that combines fealurcs of both
trace driven and distribution driven simulation models.
Using lhis model, we compared the performance of six
buffer management algorithms. Scvcrr thrashing was
observed for the three simple algorithms: RAND,
FIFO, and CLOCK. Although the inlroduclion of a
feedback load controller alleviated the problem, it
created new potential problems. As expected, the three
more sophisticated algorilhms - WS, HOT, and

139

DBMIN - performed better than the simple algorithms.
However, the WS algorithm did not perform as well as
“advertised” for virtual memory systems [Denn78].
The last two algorithms, HOT and DBMIN, were suc-
cessful in demonstrating their efficiency. In com-
parison, DBMIN provided 7 to 13% more throughput
than HOT over a wide range of operating conditions for
the tests conducted.

In [Chou85] we also examined the overhead asso-
ciated with each of the WS, HOT, and DBMIN algo-
rithms. Based on our analysis, the cost of the WS algo-
rithm is higher than that of HOT unless the page fault
rare is kept very low. In comparison, DBMIN is less
expensive lhan both WS and HOT as less usage statis-
tics need to be maintained.

Acknowledgements
This research was partially supported by the

Department of Energy under contract #DE-AC02-
81ER10920 and the National Science Foundation under
grant M CS82-0 1870.

6. References

(Astr76] Astrahan, M. M., cl. al. System R: A Rela-
tional Approach to Database Managcmcnl, ACM
Transactions on Database Systems, vol. 1, no. 2,
June 1976.

[Bitt831 Bitton, Dina, David J. DcWitl, and Carolyn
Turbyfill, Benchmarking Database Systems: A Sys-
tematic Approach, Proceedings of the Ninth Inlerna-
tional Conference on Very Large Data Bases,
November 1983.

[Blas77] Blasgcn, M. W. and K. P. Eswaran, Storage
and Access in Relational Data Base, IBM System
Journals, no. 4, pp. 363-377, 1977.

[BoraX4] Boral, Haran and David J. Dewitt, A Metho-
dology For Database System Performance Evalua-
lion, Proceedings of the International Conlerencc on
Management of Data, pp. 176185, ACM, Boston,
June 1984.

[Chou83] Chou, Hong-Tai, David J. Dewitt, Randy H.
Katz, and Anthony C. Klug, Design and Implemen-
tation of the Wisconsin Storage System, Computer
Sciences Technical Report #S24, Deparlmcnl of
Computer Sciences, University of Wisconsin,
Madison, November 1983.

[Chou85] Chou, Hong-Tai, Buffer Management in
Database Systems, Ph.D. Thesis, University 01
Wisconsin, Madison, 1985.

[DeWi84] Dewitt, David J., Raphael Finkel, and Mar-
vin Solomon, The CRYSTAL Multicomputer:
Design and Implementation Experience, Computer
Sciences Technical Report #SS3, Department of
Computer Sciences, University of Wisconsin,
Madison, September 1984.

[Denn68] Denning, Pelcr J., The Working Set Model
for Program Behavior, Communications of the
ACM, vol. 11, no. 5, pp. 323333, May 196X.

[Denn76] Denning, Peter J., Kevin C. Kahn, Jacques
Leroudier, Dominique Poticr, and Rajan Suri,
Optimal Multiprogramming, Acta Informatica, vol.
7, no. 2, pp. 197-216, 1976.

(Denn78] Denning, Peler J., Optimal Multipro-
grammed Memory Management, in Current Trends
in Programming Methodology, Vol.lll Software
Modcling, ed. Raymond T. Yeh, pp. 298-322,
Prentice-Hall, Englewood Cliffs, 197X.

[EffeX4] Effelsherg, Wolfgang and Theo Hacrdcr, Prin-
ciples of Database Buffer Management, ACM
Transactions on Database Systems, vol. 9, no. 4, pp.
560-595, December 1984.

[Fern7X] Fernandez, E.B., T. Lang, and C. Wood,
Effecl of Replacement Algorilhms on a Paged Buffer
Database System, IBM Journal of Research and
Development, vol. 22, no. 2, pp. 1X5-196, March
197x.

[Fogc74] Fogcl, Marc H., The VMOS Paging Algo-
rithm, a Practical Implementation of (he Working Set
Model, ACM Operating System Review, vol. 8,
January 1974.

[Fuji821 Fujitsu, Limited, M23SlAIAF Mini-Disk
Drive CE manual, 1982.

(Kapl80] Kaplan, Julio A., Buffer Management Policies
in a Database Environment, Masler Report, UC
Berkeley, 1980.

[King711 King, W. F. III, Analysis 01. Demand Paging
Algorithms, in Proceedings of IFIP Congress (Infor-
mation Processing 71), pp. 4X5-490, North Holland
Puhlishing Company, Amsterdam, August 1971.

[Lang771 Lang, Tomas, Christopher Wood, and
lcduardo B. Fernandcz, Database Buffer Paging in
Virtual Storage Systems, ACM Transactions on
Database Systems, vol. 2, no. 4, December, 1977.

140

ILcro76J Lcroudicr, J. and D. Poticr, Principles of
Oplimalily for Multi-Programming, Proceedings of
the inlet-national Symposium on Computer Perfor-
mance Modeling, Measurement, and Evaluation,
ACM SIGMETRICS (IFIP WG. 7.3), pp. 211-218,
Camhridgc, March 1976.

[Nybe84] Nyhcrg, Chris, Disk Scheduling and Cache
Replacement for a Database Machine, Master
Report, UC Berkeley, July, 1984.

]Gpdc74] Opdcrhcck, Holger and Wesley W. Chu, Per-
formancc of lhe Page Fault Frequency Replacement
Algorithm in a Multiprogramming Environment, in
Proceedings of IFIP Congress, Information Process-
ing 73, pp. 235-241, North Holland Puhlishing
Company, Amsterdam, August 1974.

[Reit76] Rciter, Allen, A Study of Buffer Management
Policies For Data Management Systems, Technical
Summary Report # 1619, Mathcmalics Research
Center, University of Wisconsin-Madison, March,
1976.

(SaccXZ] Sacco, Giovanni Maria and Mario Schkolnick,
A Mechanism For Managing the Buffer Pool In A
Relational Database System Using the Hot Set
Model, Proceedings of the 8th International Confer-
ence on Very Large Dala Bases, pp. 257-262, Mex-
ico City, Scptcmhcr 1982.

[SaccXS] Sacco, Giovanni Maria and Mario Schkolnick,
Buller Management in Relational Database Syslcms,
To appear in ACM Transactions on Datahasc Sys-
terns.

]Sarg76] Sargent, Rohcrt G., Statistical Analysis of
Simulation Output Data, Proceedings of ACM Sym-
posium on Simulation of Computer Systems, August
1976.

[Shcr73] Sherman, Stcphcn W. and J.C. Brownc,
Trace Driven Modcling: Rcvicw and Ovcrvicw,
Proceedings of ACM Symposium on Simulation of
Computer Systems, pp. 201-207, June 1973.

[Shcr76a] Sherman, Stephen W. and Richard S. Bricc,
l/O Buffer Performance in a Virtual Memory Sys-
tern, Proceedings of ACM Symposium on Simulalion
of Computer Systems, pp. 25-35, August, 1976.

[Sher76b] Sherman, Stephen W. and Richard S. Brice,
Performance of a Database Manager in a VirtUal
Memory System, ACM Transaclions on Database
Systems, vol. 1, no. 4, December 1976.

ISton Sloncbrakcr, Michael, Eugene Wong, and
Peter Kreps, The Design and Implementation al
INGRES, ACM Transactions on Database Systems,
vol. 1, no. 3, pp. 189-222, September 1976.

[StonBl] Stonebraker, Michael, Operating System Sup-
port for Database Management, Communications of
the ACM, vol. 24, no. 7, pp. 412-418, July 1981.

[Ston82] Stonehraker, Michael, John Woodtill, Jeff
Ranstrom, Marguerite Murphy, Marc Meyer, and
Eric Allman, Performance Enhancements to a Rela-
tional Database System, Initial draft of a paper which
appeared in TODS, vol. 8, no. 2, June, 1983.

[Thor721 Thorington, John M. Jr. and David J.
IRWIN, An Adaptive Replacement Algorithm for
Paged Memory Computer Syslcms, IEEE Transac-
tions on Computers, vol. C-21, no. 10, pp. 1053-
1061, Octohcr 1972.

(l’ucl76] Tucl, W. G. Jr., An Analysis of Buffer Pag-
ing in Virtual Storage Syslems, IBM Journal of
Research and Dcvclopmcnl, pp. 518- 520, Sep-
lcmbcr, 1976.

[Yao77] Yao, S.B, Approximating Block Acccsscs in
Database Organizations, Communications of the
ACM, vol. 20, no. 4, pp. 260-261, April 1977.

141

