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ABSTKACT 
In this paper WC present a new algorithm, 

DBMIN, fbr managing rhc hull& pool of a relational 
dolahasc managcmcnl syslcm. DBMIN is hascd on a 
new model 01‘ rclationol query hchavior, the query 
locality set model (QLSM). Like Ihc hot set model, 
the QLSM has an advantitgc over the stochastic models 
due IO ils ahility to predict I‘uturc rclbrcncc hchavior. 
Howcvcr, the QLSM avoids Ihc potential prohlcms of 
the hot set model hy separating the modeling of rclcr- 
cncc hchnvior from any particular hul’lr managcmcnt 
algorithm. Al’rcr inlroducing 111~ QLSM and dcscrihing 
the DBM IN algorithm, we present a pcrlormance 
evalualion methodology for evaluating huflbr managc- 
mcnt algorithms in a multiuser environment. This 
methodology employed a hyhrid model that comhincs 
lcaturcs of hoth tract driven and distrihution driven 
simulation models. Using this mod& the pcribrmancc 
01‘ the DBMIN algorithm in a multiuser cnvironmcnl is 
compared with that of the hot set algorithm and four 
more traditional huffcr rcplaccmcnt algorithms. 

1. Introduction 
In this paper WC prcscnl a new algorithm, 

DBMIN, Ibr managing the hul‘lcr pool 01’ a relational 
dalahasc managcmcnl syslcm. DBMIN is hascd on ;i 
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new model of relational query hchavior, the query 
locality set model (QLSM). Like the hot set model 
[Sacc82], the QLSM has an advanlagc over the stochas- 
tic models due lo its ahility to predict l’uturc rclcrcncc 
hchavior. However, Ihc QLSM avoids the potential 
problems of the hot SC’I model hy scparaiing Ihc model- 
ing of rcfcrcnce hcllavior lrom any particular buffer 
managcmcnt algorithm. After introducing the QLSM 
and dcscrihing lhc DBMIN algorithm, the pcrlbrmancc 
of Lhc DBMIN algorithm in a multiuser environment is 
compared with Ihat 01‘ the hot SCI algorithm and I’our 
more Iradilionul buffer rcplaccmcnt algorithms. 

A numhcr 01‘ l’aclors motivated this research. 
First, allhough Sloncbrakcr [ SlonR I j convincingly 
argued that conventional virtual memory page rcplacc- 
mcnl algorithms (e.g. LRU) were gcncrally not suit;thlc 
for a rclalional dattrhasc cnvironmcnl, the arca 01‘ huflbr 
managrmcnt has, for the most part, hccn ignored (con- 
trast Ihc activity in this arcit with that in the con- 
currency control arca). Second, while Ihc hot set 
results wc’rc encouraging they wcrc, in our opinion, 
inconclusive. In particular, [ SiiCCX2 ] [ SaCCXS] 
prcscntcd only limircd simulation results of rhc hot SCI 
algorithm. WC 111 that cxtcnsivc. multiuser tests of the 
hot set algorithm and conventional rcplaccmcnl policies 
would provide valuithlc insighl into Ihc e&cl oF the 
huffcr mllnagcr on overall s#em pcrlbrmancc. 

In Scclion 2, we review carlicr work on hufl+r 
managrmcnt slralcgics Ibr dalahasc systems. ‘I‘llC 
QLSM and DBMIN algorithm arc dcscrihed in Section 
3. Our multiuser pcrfbrmancc evaluation Of altcrni~tivc 
huflcr rcplaccmcnt politics is prcscntcd in Section 4. 
Section 5 contains our conclusions and suggcslions for 
future rcscarch. 

2. Buffer Management for Database Systems 
While many 01‘ ihc early srudics on dafabasc bul?lr 

managcmenl focused on the douhlc paging problem 
[ Fern7Xj [ Lang771 [Sher7ha] [Shcr76h] (Tuel76], 
rcccnl research &forts have hecn lbcused on linding 
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huller managcmcnl policies 1ha1 “undcrsland” database 
systems [ S~onXl] and know how lo exploit 1l1c prcdicla- 
hilily 01’ database rclercncc behavior. We review some 
of ~hcsc algorithnls in this section. 

2.1. Domain Separation Algorithms 
Consider a query lhal randomly accesses records 

through a B-tree index. The rool page of thr B-tree is 
obviously more importani Ihan a daIa page, since it is 
accessed will1 every record retrieval. Based on this 
ohscrvalion, Rcilcr [Rcit7h] proposed a buffer managc- 
mcnI algorithm, called the domain separation (DS) 
algorithm, in which pages are classilicd into Iypes, each 
ol‘ which is separately managed in its associated domain 
of hullers. When a page ol’ a CcrIain type is nccdcd, a 
huller is allocated from the corresponding domain. If 
none arc availahlc Ibr some reason, c.g. all the buffers 
in lhal domain have I/O in progress, a huller is hor- 
rowed from another domain. Bullrs inside each 
domain ;\rc managed hy 111~ LRll discipline. Rcitcr 
suggested a simple type assignment scheme: assign one 
domain IO each non-leaf level of 111~ B-Irec structure, 
and one IO the Ical’ level Iogcthcr with Ihc daIrI. Empiri- 
cal dala’ showed Ihal this DS algorilhm provided X-IO% 
improvement in throughput when compared with an 
LRU algorilhm. 

The main IimiIaIion ol’ the DS algorilhm is Ihat its 
conccpl of domain is sunic. The algorilhm fails IO 
rcllcct the dynamics ol’ page rcrcrcnccs as rhc impor- 
IanCC Of a pdgc may vary in dil’l’ercnI qucrics. ll is 
ohviously dcsirahlc IO keep a daur page rcsidcnI when iI 
is hcing rcpcatedly accessed in a ncstcd loops join. 
However, iI is not the cast when the same page is 
accessed in a sequential scan. Second, the DS algo- 
rithm dots noI dii‘l~crcnriatc 111~ relative imporlancc 
hclwecn diflercnt lyps of pages. An index page will he 
over-written hy another incoming index page under the 
DS algorithm, although 111~ index pltgc is polcnlially 
more imporhnt’ than a data page in anoIhcr domain. 
Memory partitioning is another potential prohlcm. Par- 
titioning hufferl according IO domains, rather Ihan 
queries, does not prevent interference among competing 
users. Lastly, a separate rncchanism needs IO hc incor- 
porated to prcvcnl thrashing sinc6 the DS algorithm has 
no huilI-in l’acilitics for load control. 

Scvcrul extensions IO the DS algorithm have hccn 
proposed. ‘T‘hc group LRlI (GLRU) algorithm, pro- 
posed hy HawIhorn (NyheX41, is similar IO DS, exCepl 
that there exists a fixed priority ranking among difrerent 
groups (domains). A starch for a (rcc huller always 
sIarIs from 111~ group wiIh 111~ lowcsl priorily. Another 

alternative, presenlcd by Ellclshcrg and tlaerdcr 
[ Effe84l, is to dynamically vary the size ol’ cacl1 domain 
using a working-scI-like [ DcnnhX] parlilioning scheme. 
Under this scheme, pages in domain i which have hcen 
referenced in the lasl Ti rcl’ercnccs are cxcmpl l‘roni 
replacement consideration. The “working scl” 01’ each 
domain may grow or shrink depending on the rcl’crcncc 
behavior of the user queries. AlIhough empirical daIa 
indicalcd that dynamic domain parlitioning can reduce 
the numhcr of page faults (of rhc syslcm) over stalic 
domain partitioning, El‘l~lshcrg and Hacrdcr concluded 
IhaI Ihcrc is no convincing cvidcncc IhaI 111~ page-Iypc- 
oriented schcmcs* arc disIincIly superior lo global algo- 
rithms, such as LRU and CLOCK. 

2.2. “New” Algorithm 
In a sIudy LO lind a hcIIcr hul~lcr managemen algo- 

rithm Ibr INGRES [Ston7hl, Kaplan [KaplXO] made 
IWO ohscrvnlions from the rcl’ercncc paIIcrns 01’ queries: 
Ihe priorily IO he given IO a page is not a properly ol’ Ihe 
page itself hut 01‘ the rchnion IO which it helongs; each 
rclalion needs ii “working sel”. Based on these ohser- 
valions, Kaplan dcsigncd an atgoriIhm, cnttrd Ihc 
“new” algorithm, in which It1c hul’lcr pool is subdivided 
and attocatcd on a per-rclalion hasis. In (his “new” 
algoriltim, Mach active relation is assigned a resident scI 
which is inilially CmpIy. The residcnI sets 01‘ rctaIions 
are linked in a priority list with a global I‘rw list on 111~ 
top. When ;I page IUulI occurs, a search is initialed 
from the lop 01’ 1l1c priorily IisI until a suitahlc buIl’cr is 
Ibund. ‘I‘hc lnulling page is Ihcn hrougl1I inIo Ihc 
hulTcr and added IO the rcsidcnI SCI 01‘ 1t1c rclaIion. l‘hc 
MRU discipline is cmploycd within each relation. 
However, cvch rcl;IIion is c*nIitled IO one acIivc huller 
whicl1 is cxcmpt l‘rom rcplacemenI consideration. The 
ordering 01. relations is dclcrrnined, and may he adjuslcd 
suhscqucntly, hy iI SCI ol heuristics. A rclafion is 
placed near Ihc lop il‘ iIs pages are unlikely IO he rc- 
used. Olherwisc, Il1c relalion is proIecIcd at Il1c hoIIon1. 
Resut~s l’rom Kaplan’s simuhnion cxpcrimcnts suggcsled 
Illal llic “new” algorithm pcrlolmcd much hcticr than 
lhc UNIX hul’lcr manager. Howcvcr, in a Irinl irnplc- 
menIalion lS1onX2], IIIC “new” algorithn1 lailcd lo 
improve Itic perlorniancc or iln cxpcrimcnlat version 01. 
INCRES which uscs an LRU aIgorithn1. 

Ttic “new” algorilt1n1 prcscnlcd i! new ilpprOiiCll IO 
huller n1;1nagcmcnt, an approach IIIUI Iracks Iilc localily 
0r a query Ilirough retalions. tiowcvcr, llic algorilt~m 
itself has several weak points. The USC' 01’ MRIJ is jus- 
tiliahlc only in IimiIcd cases. l‘hc rules suggested hy 
Kaplan for arranging 111~ order 01‘ rclalions on Ihc prior- 
iIy list wcrc hascd solely on inluilion. Furlt1crn1orc, 

2 l’lle 1)s ;Ilgo~-itl~n~ is c;~llrtl ;I p;tpc-l! pr-wirnled Iwllrl~ ~IIIO- 
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under high mcmorv conlcnlion, searching through a 
pl-iorily lisl for a l’rci hul‘fcr can hc cxpcnsivc. Finally, 
CxIending the “new” algorithm IO a multi-user environ- 
mL’nl prcscnls addiilional prohlems as ir is nol clear how 
lo cslahlish priority among retarions from differen! 
qucrics Ihal arc running concurrently. 

2.3. Hot Set Algorithm 
The hoI SC’I model proposed by Sacco and Schkot- 

nick [SaccX2] is a query behavior model for relational 
dalahasc syslcms th.31 inlegralcs advance knowledge on 
rclrcnce patlcrns inIo the model. In this model, a set 
of pages over which Ihcrc is a looping behavior is called 
a hot set. If ;I query is given a buffer large enough IO 
hold the hoI SCIS, iIs processing will hc efiicienI as the 
pages rcl&cnccd in a loop will slay in the huffer. On 
Ihc oIher hand, a targc numher of page fautls may 
result it ihc memory atlocaled IO a query is insufficicnl 
IO hold a hoI sel. Plotring Ihe numher of page I’aulu as 
a funcIion of buffer size, WC can ohscrve a disconlinuily 
around the huffcr size where rhc ahovc scenario Iakcs 
place. ‘l’hcre may hc scvcral such discontinuilics in ~hc 
curve, each is catlcd a hot point. 

In a ncsicd loops ,join in which Ihcrc is a scqucn 
lial scan on both r&lions, a hoI poini of Ihc query is 
Ihc numhcr of patgcs in Ihc inner rclaIion plus enc. 
‘l‘he tormuta is dcrivcd hy reserving enough huI‘l?rs IO 
hold Ihc CnIirc inner rclalion, which will hc rcpcarcdly 
scanned, plus one huffcr I‘or Ihc oulcr rclalion, which 
will hc scanned only once’. II‘, inslcad, Ihc scan on Ihe 
ouIcr rclalion is an index scan, an addirionat hufl’cr is 
required lor Ihc Ical. pages of lhc index. Following 
similar argumcnls, Ihe hoc pinIs lor diffcrcnc qucrics 
can hc dclcrmincd. 

Applying Ihc pl-CdicIahiliIy of rcl’crcncc pallcrns in 
qucrics, Ihe hoc SCI modct provides a more accuralc 
rcferencc model tor rclalionat darahasc syslcms Ihan a 
sIochasIic model. Howcvcr, ~hc dcrivalion 01‘ (hc hot SCI 
model is hasCd parlially on an LRU rcplaccmcnl algo- 
rithm, which is inappropriate tar certain looping 
hchavior. In t&l, Ihc MRU (MosI-RcccnIly-Usc‘d) 
algorithm, the opposilc IO an LRU algorithm, is more 
suiIcd lor cycles of rclcrcnccs [Thor72], hccausc Ihc 
mosl-rcccntly-used page in a loop is Ihc one IhaI wilt 
nol he rc-accessed lor Ihe longcsi period of Iimc. Going 
hack IO Ihe neslcd loops ,join cxamplc, Ihc numhcr 01 
page faulls will noI incrcasc dramarically when Ihc 
numhcl- of hul‘lbrs drops hclow Ihc “hoI poinI” if the 
MRU algorithm is used. In Ihis rcspccl, the hot scl 
mod4 does noi Iruly rctlcci rhc inhcrenl hchavior of 
some rcfcrencc pallerns, but rather Ihc hchavior under 
an LRU algorithm. 

In the hor sci (HOT) algorithm, each quCry is pro- 
vided a scparatc IisI of huffcrs managed hy an LRU dis- 

ciplinc. The number of huffCrs Citch query is CnIiItcd IO 
is predicted according to the hor set model. l‘hal is, a 
query is given a local huflcr pool of size equal IO ils hot 
set size. A new query is allowed IO enlcr Ihc syslcm if 
its hoI se1 size dots nol exceed Ihc avaitahlc hullr 
space. 

As discussed ahove, the USC’ of LRU in Ihc hot XI 
model lacks a logical justificaIion. There cxisI cases 
where LRU is the worse possible discipline under tighI 
memory conslrainl. The hoI se1 algorithm avoids this 
prohlem hy always allocating enough memory IO ensure 
Ihar references lo different dala srructurcs wilhin a 
query wilt not inlcrfere with one anoIher. Thus iI tends 
lo over-allocalc memory, which implies 1haI memory 
may he under-utilized. AnoIhcr related prohlem is IhaI 
thcrc arc reference patlerns in which LRU dots pcr- 
form welt huI is unnecessary since anolhcr discipline 
wirh a lower ovcrhcad can perform cquatly welt. 

3. The I)HMlN Buffer Management Algorithm 
In lhis seclion, wc lirsl inlroducc a new query 

hchavior model, Ihc query locality set model (QLSM ), 
tor dalahasc syslcms. Using a classilicoIion of page 
refcrcncc paucrns, WC show how lhc rcfcrcncc hchevior 
of common dalahasC opcralions can hc dcscrihcd as ii 
composilion ot‘ a SCI of simple and regular rclcrcncc 
pallcrns. Like Ihc 1101 scl mod4 Ihc QLSkl IIas an 
advanlagc over the scochaslic models due IO its ahiliIy IO 
predicI tulurc rclrrencc hchuvior. Howcvcr, ~hc‘ QLSM 
avoids IIIC polcntial prohlcms 01. the 1101 SC’I model hy 
scparaIing Ihc modcling of retcrcncc hchavior I‘rom any 
pariiculnr hul‘~Cr managCmcnI atgorilhm. 

Ncxl WC dcscrihc a new hul’tcr managemcnI also- 
rithm Icrmcd DBMIN hascd on the QLSM. In Ihis 
algorithm, huflrs arc altocalcd and managed on a per 
file instance basis. Each file inslancc is given a tocat 
hul’ltir pool IO hold iIs locality set, which is rhc SC! of 
1hC hull&cd paSCs asso&ICd Ihc lilt inslance. DBMIN 
Can hc vicwcd as a combination of a working set algo- 
rithm [DcnnhX] and Kaplan’s “new” algorithm in the 
sense IhaI Ihc IoCaliIy set associalcd with each file 
insIancc is similar IO Ihc working set associalcd with 
each process. Howcvcr, lhc size of a locality SCI is 
delcrmincd in advance, and needs noI hc re-catculaIcd 
as Ihc cxeculion of the query progrcsscs. This prcdic- 
tivc nalurc of DBMIN is close lo Ihal of the hor SCI 
algorithm. Similar IO the WS and the hot se1 algo- 
rithmj, DBMIN uses a dynamic partitioning schcmc, in 
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which 111~ IoLd numhcr of buffers assigned to a query 
may vary as lilts (r&lions) are opened and closed. 

3.1. The Query Locality set Model 
The QLSM is based on the ohservation that rela- 

tional database systems support a limited set of opera- 
lions and thal the pallern of page references exhibited 
by thcsc opcrarions arc very regular and predictable. In 
nddilion, Ihc rcfcrencc patlern of a database operation 
can hc decomposed into the composition of a number of 
simple rcl?rcnce patterns. Consider, for example, an 
index join wilh an index on the joining attribute of the 
inner rclalion. The QLSM will idenlify two localily SclS 
for this operation: one for rhc sequential scan of the 
outer relation and a second for the index and data pages 
of rhc inner relation. In this section, we prcscnl a lax- 
onomy for classifying the page rcfcrence patlerns exhi- 
hitcd hy common access methods and database opera- 
lions4 

Seqornti;ll Kef~rences 

In ;I sequcnlial scan, pages arc referenced and pro- 
ccsscd one after another. In many cases, a scqucnlial 
scan is done only once without rcpelilion. For cxiim- 
plc, during a sclccGon operation on an unordered rela- 
lion, each page in the file is accessed exactly once. A 
single page frame provides all the hufli‘r space that is 
required. WC shall refer lo such a rcfcrcncc pallcrn as 
straight sequential (SS). 

Local rc-scans may hc ohscrvcd in the course of a 
sequential scan during ccrlnin datahasc operations. 
Thai is, once in a while, a scan may hack up a shorr 
distance and then start I’orwnrd again. This can happen 
in a mcrgc join [l3las77) in which records wilh the 
same key vrrluc in rhc inner relation arc rcpcarcdly 
scanned and matched wilh rhosc in I~C oulc’r relation. 
We shall call this pattern of rcfcrcncc clustered 
sequential (CS). Ohviously, records in a cluslcr (a SL’I 
of records with the same key value) should hc kcpl in 
memory at lhc! same (ime if possible. 

In somc’cascs, a scqucnlial rcfcrcncc I0 a lilt nliiy 

hc repeated several times. In a ncslcd loops join, for 
inslance, the inner relation is,rcpcatcdly scanned unlil 
the outer rclalion is exhausted. We shall call this it 
looping sequential (LS) pattern. The cnlirc lilt thal is 
hcing rcpcalcdly scanned should hc kcpl in memory il 
possible. If the file is loo largc’lo lit in memory, an 
MRU rcplaccmcnl algorilhm should hc used lo manage 
rhc huffcr pool. 

- ..-- .-.-. -.-- ..-.-.-._ -._ 
4A similar analysis or qlrery reference behavior was indepen- 

dently derived in [Sacc851. 

Random Hcl’erences 
An independent random (IR) reference pailcrn 

consists a series of indcpcndcnl ;~cccsscs. As an cxam- 
pie, during an index scan through a ,non-clusuzrcd 
index, the dau pages arc accessed in a random manner. 
There are also cases when a localiry of reference cxisrs 
in a series of “random” acccssc’s. This may happen in 
the evaluation of a join in which a file with a non- 
clustered and non-unique index i!; used as the inner 
relation, while the outer relation is a cluslcred file with 
non-unique keys. This pattern of refrcncc is icrmed 
clustered random (CR). The reference hchavior of iI 
CR rcfcrcncc is similar to thaw of a CS scan. II 
possible, each page containing a record in a clusccr 
should be kept in memory. 

Hierarchical References 
A hierarchical reference is a sequence of page 

acccsscs that form a lravcrsal path from the root down 
10 the leaves of an index. If rhc index is lravcrsed only 
once (e.g. when retrieving a single ruplc), one page 
frame is enough for huflcring all rhc index pages. WC 
shall call (his a straight hierarchical (SH) reference. 
There arc Iwo cases in which a tree lravcrsal is followed 
hy a sequenGal scan through the leaves: hierarchical 
with straight sequential (HEX), if rhc scan on rhc 
leaves is SS, or hierarchical with clustered sequen- 
tial (H/CS), olhcrwisc. Nolc rhai rhc rcfcrcncc parterns 
01’ an HISS reference and an H/CS reference arc simi- 
lar IO IIIOSC of an SS rcfrcncc and a CS rcfercncc, 
respcclivcly. 

During the cvalualion of a ,join in which ~hc inner 
rclalion is indcxcd on rhc join field, repealed accesses lo 
the index slructurc may hi ohscrvcd. We shall call rhis 
paltern of rcfcrcncc as looping hierarchical (LH). In 
an LH rcferclncc, pages closer IO kc root arc mow 
likely IO hc acccsscd Ihan those closer 10 Ihe ICXWS. 
The access prohahilily of an index page al level i, 
assuming lhc root is al level 0, is inversely proporlional 
to the ilh power of the fan-oul I’ncIor of an index page. 
Thcrcl‘orc, pages a~ an upper Icvcl (which arc closer lo 
~hc roo0 should have higher prioriry rhan those al’ a 
lower Icvcl. In many cases, lhc root is perhaps the only 
page worth keeping in memory since rhc fan-OUI Of an 
index page is usually high. 

3.2. DBMIN - A Huf’t’er MatIagement Algorithm 
Based on the QLSM 

In the DBMIN algorithm, hull&s arc dlo~akd 
and managed on a per tile instance basis’. The SC1 01’ 
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hul‘lcrcd pages associaicd with a lilt instimcc is rcferrcd 
to as its locality set. Each iocalily scl is scparalcly 
managed by a discipline selected according IO Ihe 
inIcndcd usage of the lile inslance. If a huffcr conlains 
:I prlgc IhaI dots not hclong IO any IocaliIy set, the 
hulltir is placed on a glohal free list. For simplicity of 
implcmcnlalion, WC rcslricl that a page in Ihe buffer can 
hclong lo al mosl one IocaliIy XI. A lilt instance is 
considcrcd Ihc owner of all the pages in iIs locality set. 
‘1’0 allow for daIa sharing among concurrent queries, all 
Ihc buffers in memory are also accessible through a 
glohal huffcr Iahlc. The following noIalion will be used 
in describing the algorithm: 

N - rhc ioial numhcr of huffcrs (page frames) in 
Ihe sysrem; 

Iii - Ihe maximum numhcr of huffers thar can be 
ailocarcd IO lilt inslancc j of query i; 
ril - Ihc numhcr 01‘ huflbrs allocated IO lile inslancc 
j bf query i. 

NOIC thaI I is Ihe desired size for a localily scl while r is 
Ihc actual size of a locality WI. 

AI slat-1 up Iimc, DBMIN inilializcs Ihc global llihlc 
and links all Ihe huffcrs in Ihc system on the global free 
IisI. When a file is opcnc’d, ils associaicd localily WI 
size and rcplaccmenl policy arc given IO rhc huffcr 
manager. An emply locality WI is then iniIialized for 
the tile inslancc. The IWO control variahlcs r and I 
associated wirh Ihc file inslancc arc inilializcd IO 0 and 
Ihc given localily scl size, rcspcclivcly. 

When a page is rcqucsled hy a query, a search is 
made IO 111~ glohal tahlc, followed hy an adjusImcni lo 
the associated IocaliIy SCI. Thcrc arc Ihrcc possihlc 
cases: 

(1) 

(2) 

(3) 

The page is t’ounrl in both the global tilble and 
the loc:tlity set: In Ihis cast, only Ihc usage slalis- 
Iics need IO hc updaIcd iI. necessary as dcicrmincd 
hy Ihc local rcplaccmcni policy. 

The page is found in memory but not in the 
locality set: If the page already has an owner, the 
page is simply given IO Ihc rcqucsling query and no 
furIhcr acIions arc required. OIherwisc, the page 
is added IO ~hc locality set of I~C lilt inslance, and 
r is incrcmentrd by one. Now if r > I, a page is 
chosen and rcleascd hack IO Ihc glohal l’rcc IisI 
according IO the local rcplaccmcni policy, and r is 
set lo I. Usage slatisiics arc‘ updated as rcquircd hy 
the local rcplaccmcnc policy. 

The page is not in memory: A disk read is 
schcdulcd to bring the page from disk into a buffer 
allocaIed from the glohal free IisI. AfIer the page 
is brought into memory, proceed as in case 2. 

Nolc IhaI IIIC local rcplaccmenl politics associalcd wiIh 
file inslances do not cause actual swapping of pages. 
Their real purpose is to mainlain Ihc image of a query’s 
“working set”. Disk reads and wriIcs are issued hy lhc 
mechanism thaI maintains the global tihlc and the glo- 
bal free lisl. 

The load conrrollcr is aclivated when a file is 
opened or closed. ImmediaIely aller a lile is opened, 
the load controller checks whelhcr \3\‘lii < N for all 

i,l ’ 
active queries i and their lilt inslances j. If so, the 
query is allowed IO proceed; olhcrwisc, iI is suspended 
and placed aI Ihc fronI of a waiting queue. When a lilt 
is closed, buffers associated wiIh iIs locality seI are 
released hack IO the glohal free IisI. The load conlroller 
Ihen acIivaIcs Ihc firsI query on the waiting qucuc if this 
will not cause Ihe above condition IO hc violated. 

WhaI remains IO hc dcscribcd is how Ihc QLSn4 is 
used to sclccr local replaccmcnl politics and cslimaIc 
sizes for I~C locality sels of each lilt inslance. 
Straight Sequential (SS) References 

For SS rcfcrcnccs lhc IocaliIy scl size is ohviously 
I. When ;I rcqucsicd page is nol found in Ihc hufltir, 
Ihc page is I’crchcd from disk and ovcrwrilcs whalevcr is 
in Ihc huI’l.cr. 
Clustered Sequential (CS) References 

For CS rcl’crcnces, if possihlc, all mcmhcrs of a 
cluslcr Ii.c. records wiIh ~hc same key) should hc kepl 
in memory. Thus, 111~ IocaliIy WI size equals the 
numhcr of records in ~hc Iargcst clusIer divided hy Ihe 
blocking IacIor (i.e. ~hc numher of records per page). 
Provided 1l1a1 enough space is allocaIcd, FIFO and LRU 
hoIh yield IIK minimum numhcr 01‘ page laul~s. 
Looping Sequential (125) References 

When II lilt is being rcpcaccdly scanned in an LS 
rcfcrcncc pallcrn, MRU is Ihc hcsi rcplacemcnI algo- 
rilhm. II is hcnclicial IO give 111~ file as many hufkrs 
as possihlc, up IO the point whcrc 111~ cnIirc file can fiI 
in memory. Hcncc, Ihc IocaliIy SCI size corresponds IO 
lhc IOI~I numhcr of pages in 111~ lilt. 
independent Random (IR) References 

When the records 01. a lilt arc hcing randomly 
acccsscd, WY through a hash Iahlc, Ihc choice 01' a 
replaccmeni algorilhm is immalcrial since all lhc algo- 
rilhms Frlorm equally well [King71]. Yao’s formula 
IYao77], which cslimalcs Ihc lotal numhel- of pages 
rdcrcnccd b in a series of k random record accc’ssc’s, 
provides an (approximate) upper hound on Ihe locality 
scl size. In Ihosc cases whcrc page rel’erenccs al-e 
sparse, Ihcrc is no need IO keep ;i page in memory af‘~r~ 
ils initial refcrencc. ‘l‘hus, tlic.rc art% Iwo rcasonairli 
sizes lor the locality SCI, I tend b, dcpcllding on the 
likelihood Ihal each page is rc-rcl?rcnccd. For exam- 
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Far hoIll SH Nld H /SS rcl?rwccs C’iIcll itldcx pgc 
is twcrs~d onI! once’. I‘llUS IIlL’ IOCillil~ SCI siz\: 01 
CSC~ is 1 illld iI single h~lll?r page is iill [l1;11 is nocdcd, 
The discussion 011 CS rcltircnces is :tpplic;\hlc IQ H/CS 
rL’fCrc*nCc’S, CxC~‘pl Ihal ~;~cli mcmh~r in ;I CluSlcr is noi\ 
:I kc%y-poinlcr pair ralllcr lh;m iI d;ll;b record. 

IBoping Hierarchic:rl (1.H) Reft,rrncrs 

In 311 LH rcl’crum, ;in index is rup.Wc~dly 
Ir,avcrscd I‘roill IllC root IO IIIC ICUI ICVCI. In SllCll :I 
rcfvrc‘iicc, pi\gcs nc’;Ir 111~ roa :IrC mow likely 10 hc 
accessed Illiill IIKW ;II 111~ holIon [ Rcil7hJ. Considu iI 
Irc‘c‘ ol’ Ilciglil I1 ilnd will1 :I Im-oul lilClOr f, \Villioul 
loss 01’ gcn~wlily, ;issumc ilic trc’c is coniplc‘~c. i.e. 

cuch non-Ical’ node has f sons. Durillg SKI\ trtl\‘~rsill 
Ironi lllc root ill ICVCI 0 IO il IClll’ rll ICVCI Il. pnc 0111 Ol 
111~ ti paps rti ICVCI i is rcrcrcnccd. ‘I’lwrclbrc‘ pip’s dl 
an uppu lcvcl (which arc clowr lo Ilic root\ arc mnrc 
imporlanl Illan IllOSC ;I1 it lower ICVCI. Cons~qiicnlly. ill1 
idcal rcplvccmcnl ;Ilgorirhm ShotlId kc~p \h~ i\cIivC 
p;lscs 01’ 111~ upper lcvcls ol’ iI Irc’c rcsidcnl iII\Q williplcx 
ilic ITSI 01’ 111~ pages in ;I scr:rich hul’l?r. 1’1~ CCwCcpl 01 
"rcSidu;~l Y;~~IIC” (dclincd I’or lhc IR rckrcncv pllcrn I 
can hc llscd ,IO CsIilll;\IC Ilow many IOTIS SIICVII~ hc LCpl 
in memory. i LCI l>i hen 111~ numhcr Ol’ p~gcS ItCCSSSCd ill 
lcvt~l i ;IS es inl:lIcd hy j’;lO’S formtllii. ‘i’hr\ sift of 111~’ 

1 
Ioc:tIily SCI can hc ;rpproximaicd hy (1 -t 4 bl)-+ I, 

i I 

whew j is IllC lilrL$!SI i SllCll ?Il:ll 
k bi 
- > p. In ni:iny 

bi 
CiIscs, II~C root is WrhupS Ihc only piIgC worth kcvping 
in nicmory, SinCc 111~ (iIn-oIII I$ ;III index PiIgC iS USII- 
ilIly lligh. II’ ihis is irklc’, Ilic LIFO iilgori~hm Wld 3-J 
hufltirs nlay dc’livcr ;I r~itsotl:Ihl~ ICVCI 01’ pcrl’orniancc 
iiS 111~ rool is ;~l\\xys kcpl in nicniary. 

In this scclion. 1,~ cc\nip;irc Ilic ~rlorm:mcc 01. 
111~ DBhl II\: ;~Igori~h~~l \vilh 111~ 1101 WI :~~gorilhlll ;llld 

Ibur oljjcr huff~r n~;ln;~~Cn~~nl SlrillCgitJS in ;I mtilliiis~~r 
cnvironmcnl. l‘hc scclioli hcgins hy dcscrihing 111~ 
mclliodology used tbr 111~ c\.aluitlion. N~xl, implcmcn- 
I;tlion ~i~~i~ilS of' 111~ six hul’fcr nl;lll;lgc'nl\*lll ;llgorilllnls 

lcslc~d LlrC prCscnlCd. Fin;llly, 111~ I'C'SIIIIS 01‘ s@nlc' 01 

our CxprimCnls arc prcscnlcd. For ;I IIJ~JI c co~nplc~c 
prcscnl;~lion 01’ OIIV rcsulls. 111~ inlcrcstCd rt*;idk,r should 

CXitlllillC (CllOllll.~ I. 

Tlicr~ \VCW llll’~T Cll&xY ICrr C\~~llllillill~ IIIC diI’- 
l?rcnl hul’l’cr mim;~gl~m~~ll al~orilIlms: dirvt*l nl\~;tsurc- 
nwnl, an;ilyiic;ll mod~~liilg. :III~ siniulnlioii. Dirccl 
nicwrcnicni, illlll@ll~ll I'hsildc, \\;ls c‘limii~:llcd ;IS IO0 
conlp~~l~ilionally cxpwsi\c~. An;llvlic modclillg. while 
quilt CW-ClTCclivc‘, silllpl\. co111,i 1101 niodcl llw dil~fcrcwl 
ulpritlinis iii sulliciciil dcl;iil \\liilc hoping 111~ solu- 
li@nS lo Ihc‘ cqu;ilionS imi;thlc-. ConsCqu~iill~, wc 
CIIOOSC siwil;lricw ;IS lllc Iusis l’or 011r CVill~l;~li~~ll, 

l‘\w lyp3 ol’ simul;llions ;IIY \\idcl!, used [ Sh~~r7.3]: 
trace driwl simnhtions which arc driven try I~XC‘S 
rccordcd I’rom ;I rc;\l S+LW. ;~iid distribntion ririvrtl 

silil ahlions in which C'\LWIS arc g~vlcrakd hy ;I wndom 
prows uilh ccrlain sl0cll;tslic slrIicItir~. .A tr:icc drivc)n 
IllOdCl IlaS SC\Cri\l iId\ 311I;l$L'S, including crcJilahilil! 
and liw \\OrhloiiJ cll;lr~~~l~riz;t~iorl which cnahlcs stlhllc 
corrclalioiis 01’ cwnls IO Iw prcscr\c4. Howwc~~. sclcct 
ing ;I "r~~~rcsclil:lli\~~" wcwhlo;rd ic diflicull ii) many 
CiISc'S. l~~irlli~rnicw, il is Il;lrJ In Cll;lrilClCliZC IllC 
inlcrfcrcncc ;iiiJ corr~l:ilion h~~~\\~~vi concurrcnl ;iclivi- 
lies in ;I mulliuscr cn\.irwm~wI w II~;II IIIC wax dau 
c;ln hc proprly IrtitlCJ ill ;III ;IIIC~CCI model with ;I &I’- 
I:rcnl COllli~~lrilliOn. ‘1’0 ;n&l II~LW prohlcms, \\c’ 
dcsigucd ;I hybrid simal;ltion model Ill:11 coml~inc~s 
I’~;ltllr~*S 01’ hoIll Irilcc (11 ivcrl ;mJ dislrihulion driww 

lllodcls. In Ihis hybrid mod~4, 111~ hchwicw 4’ I*~~cII 
iljdividli;ll query iS J~SL ribcxi hy ;I Ir;lW siring. illld IllC 
SySl~m \vnrhloi~d is JyIl;IInic;IIl~ s!lllllcsizctJ hv inL-rging 
Illc IrilcC Slrinp 01’ 111~~ coiictirrt%lly ~xCCuliilg qlricrics. 

,Anolll~r Conipn~lil irl‘ 0111' silllltlilliOll niodcl is :I 

simul;wr l’or d;~l;~h:\w SVSICIIIS which nl;~;~gcs II~IXY 
iniprl;inI rc5oIirccs: Cl’l1, ;in I/O dcvicL>, and mcmol-y. 
\Vlicn ;I 11kv qrkvy ;wi\LY, ;I lo;iJ coiitrollcr (il’ il taxisIs 
dccidcs. Jcpnding (rn 111~ ;wail;~hilily nl’ 111~ I'CSCNII'CC'S ;\I 

IIlL- linic, \vli~*llicr lo ilCli\ill~ or JL~l;l~ IIIC qiicry. Al’lCr 3 

qllc*ry iS ;IClivalc*d, iI circul;llc~s in ;I loop hwxcn 111~ 
Cl’ll iIl\d ;III I/O dcvicc IO Conl~l~ 1.01' rc'soiirccs unlii il 

lin ishcs, Al’lw ii qiiory Icrniin;il~s. ;inolliCr new ql1cr.V 
is gcncralsd hy ~lle \vorklo;\d model. An active cI~IL"~v. 
l1owrvct', may he tcmpr;trily stlspwdcd hy 111~ Inad 
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controller when the condition of over-loading is 
dctccfcd. 

Although the page fault rate is frequently used to 
mcasurc lhc performance of a memory managemcnl 
policy, minimizing the number of page faults in a 
multi-programmed environment does not guarantee 
optimal system behavior. Thus, throughput, measured 
as the average number of queries completed per second, 
was chosen as our performance metric. In the follow- 
ing sections, WC shall describe three key aspecls of’ the 
simulation model (Figure I ): workload charactcriza- 
lion, configuration model, and performance measure- 
menl. 

41.1. Workload Synthesis 
‘l’hc first step in developing a workload was IO 

ohlain single-query (race strings hy running queries on 
~hc Wisconsin Storage Syslcm’ (WiSS) [Chou83]. 
While WiSS supports a numher of sloragc structures 
and Iheir related scanning operalions, WiSS does not 
directly support a high-level query interlace; hence, Ihc 
lest queries were’ “hand coded”. A synrhclic darahasc 
[Bitt831 with a well-dclincd distrihulion slructurc, was 
used in the experiments. Scvcral types of’ events were 
recorded (with accuratr timing inl’ormalion) during the 
execution of each query, including page accesses, disk 
I/O’s, and file operations (i.e. opening and closing of 
files). 

A trace string can he vicwcd as an array or cvcnl 
records, each of which has a tag licld lhal idcntilics lhc 
~ypc OF ihc cvcni. Thc*rc arc six imporranl c’vcnt ~ypcs: 

Workload Model - Trace Slrings .I 

Configuration Model - Dutahasc System Simulator -I 
1 _-___-- 

Performance MeasuremcnI - Throughput 

A Simulalion Model lor Da~ahasc Syslcms 
Figure 1 

page read, page write, disk read, disk write, file open, 
and file close. Disk read and write events come in pairs 
bracketing the time interval of a disk operation’. The 
corresponding record formats in the trace string are: 

Page read and write 

page read / write file ID page ID time stamp 

Disk read and write 

disk read / write file ID page ID time stamp 

File open 

file open lile ID locality set size replacement policy 

File close 

file close lile ID 

The time stamps originally recorded were’ real (elapsed) 
times of the system. For reasons IO be explained later, 
disk read and write events were removed from rhe 
trace strings, and the time stamps of other events were 
adjusted accordingly. In essence, the time scamps in a 
modilied trace string reflect the virtual (or CPU) times 
0r a query. 

Since accurate timing, on the order of 100 micro- 
seconds, is required IO record the events at such 
detailed level, ihc tracing wc’rc done on a dcdicaled 
VAX-I l/750 under a very simple operating kernel, 
which is designed for Ihc CRYSTAL muhicompu~er 
system [DcWiX4]. To reduce Ihc overhead of’ obtaining 
the lracc strings, events wcrc’ recorded in main memory 
and written IO a file (provided hy WiSS) after tracing 
had ended. 

In the multiuser hcnchmarking methodology 
described in [ BoraX4J, three lhctors that affect 
throughput in a multiuser environmcnl were identified: 
the numhcr oi‘ concurrcnl queries’, the degree of dau 
sharing, and the query mix. 

The numhcr 01‘ concurrent queries (NCQ) in each 
of our simulalion runs was varied from 1 IO 32. To 
study ihc effects of data sharing, 32 copies of the tcsl 
datiihasc were replicated. Each copy was stored in a 
separate portion of the disk. Three levels 01‘ data shar-- 
ing wcrc dclincd according IO the average numhcr of 

concurrent queries accessing a copy of the datahasc: 

(1) full sharing, all queries xccss lhc same dab 
hasc; 

(2) hall. sharing, cvcry IWO queries share a copy 01‘ 

rhc dalahasc; and 

(3) no sharing, every query has its own Copy. 

s The vet-sion of WiSS used for gathering the trace string+ 
does nor overlap CPU and I/O execution. 

” The term, multiprogramming level (MPL), wa> used 111 
(BoraS41. However, since it is desirable to distinguish the external 
worhload condition from the internal degree of multiprogramming, 
“number of concurrent queries” (NCQ) is used here instead. (1~~ 
ing our definitions, MPL 5 NCQ under a buffer manager wirh 
load control. 
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The approach to query mix selection used in [Borag4] 
is based on a dichotomy on the consumption of two sys- 
tem resources, CPU cycles and disk bandwidth. For 
this study, this classification scheme was extended to 
incorporate the amount of main memory utilized by the 
query (Table 1). After some initial testing, six queries 
were chosen as the base queries for synthesizing the 
multiuser workload (Table 2). The CPU and disk con- 
sumptions of the queries were calculated from the 
single-query trace strings, and the corresponding 
memory requirements were estimated by the hot set 
model (which are almost identical to those from the 
query locality set model). Table 3 contains a summary 
description of the queries. 

At simulation time, a multiuser workload is con- 
structed by dynamically merging the single-query trace 
strings according to a given probability vector, which 
describes the relative frequency of each query type. 
The trace string of an active query is read and pro- 
cessed, one event at a time, hy the CPU simulator when 
the query is being served by the CPU. For a page read 
or write event, the CPU simulator advances the query’s 
CPU time (according to the time stamp in the event 
record), and forwards the page request to the buffer 
manager. If the requested page is not found in the 
buffer, the query is blocked while the page is being 
fetched from the disk. The exact ordering of the cvcnls 
from the concurrent queries are determined hy the 
behavior of the simulated system and the time stamps 
recorded in the trace strings. 

Query CPU Usage Number of Hot Set Size 
Number (seconds) Disk IO’s (4K-pages) 

I .53 17 3 
II .67 99 3 
Ill 2.95 53 5 
IV 3.09 120 5 
V 3.47 55 17 
VI 3.50 138 24 

Representative Queries 
Table 2 

4.1.2. Configuration Model 
Three hardware components arc simulated in the 

model: a CPU, a disk, and a pool of buffers. A 
round-robin scheduler is used for allocating CPU cycles 
to competing queries. The CPU usage of each query is 
determined from the associated trace string, in which 
detailed timing information has been recorded. In this 
respect, the simulator’s CPU has the characteristics of a 
VAX- I 11750 CPU. The simulator’s kernel schedules 
disk requests on a first-come-first-serve basis. In addi- 
tion, an auxiliary disk queue is maintained for imple- 
menting dclaycd asynchronous writes, which are ini- 
tiated only when the disk is ahout to become idle. 

The disk times recorded in the trace strings tend to 
be smaller than what they would he in a “real” environ- 
ment for two reasons: t 1) lhc datahasc used in the trac- 
ing is relatively small; and (2) disk arm movements are 

Query Classification 
Table 1 

A,B: 10K tuples; A’: 1K tuples; B’:300 tuples; 182 bytes per tuple. 

Description of Base Queries 
Table 3 
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uwally less Ircqtrt.nl on a single user system liian in a 
niulliuscr environmcnl. Furthcrmorc, rcqucsls Ibr disk 
opcr:rrions arc affcclcd hy the operating conditions and 
rhc hull’cr mnnagcmcnI algorithm used. Therefore, Ihc 
dish Iimcs recorded were replaced hy a slochasdc disk 
model, in which a random process on disk head posi- 
tions is ussumed. In the disk simulalor, the access lime 

of’ a disk operation is calculated from the timing specifi- 
calions of’ a Fujitsu Eagle disk drive [Fuji82]. On Ihe 
average, it lakes about 27.6 ms lo access a 4K page. 

The buffer pool is under the control of the buffer 
manager using one of the buffer managcmenl algo- 
riIhms. However, the operating system can fix a buffer 
in memory when an I/O operation is in progress. The 
size ol’ the huffcr pool for each simulation run is deler- 
mined hy the formula: 

xpitilli 

x. .i- 

TPiti 
I 

where pi is Ihc ith elcmcnl 01‘ Ihc query mix prohahilily 
vecIor and ti and hi are Ihc CPLI USI& and lhc hol XI 
size 01. query i, rcspcclivcly. The inlcnl was lo saluralc 
the memoI-y ;)I ;I load 01. eight concurrcnl qucrics so Ihal 
~hc cl.lccI ol’ overloading on ~rlormancc under dil’l’crcnI 
huller managcmenl algorilhms could hc ohscrvcd. 

3. 1.3. St:rtistic;ll Validity of’ I’ertbrm;~r~rr Mr;tsurr- 
mrnts 

ljiilcll means (Sarg7hl \&IS SClCClCd iiS the mcrhod 
lor cstim;rIing conlidcncc inlcrvals. ‘1’11~ numhcr 01’ 
huichcs in cuch simulalion run w;ts SCI IO 20. Analysis 
01 IIIC rhroughpuI mcasurcmcnIs indicates IhaI many 01’ 
Ihc conlidcncc inIcrvals ICII wiIhin I’,; 01. rhc mean. 
For those cxpcrimcnrs in which thrashing occurred, Ihc 
IcngIh ol ;i hitlch \vas extended lo cnsurc’ Ihal alI conli- 
dcncc inlcrviils wcrc within 5’; 01‘ Illc mc;rn. 

4.2. Iluff’rr Management Algorithms 

Six huI‘l?r m:rnagcmcnI algorilhms, divided into 
wo groups, wcrc included in the cxpl-imcnls. ~I‘llC 
Iif-st croup consisled 01‘ rhrcc simple algorithms: KAND, c 
FIFO, and CLOCK. ‘l‘hcy wcrc chosen hccausc they 
arc’ typical replaccmen~ algorithms and ;irc easy IO 
implcmcnt. II is inlcrcsling lo compare their pcrlor- 
mancc wilh lh;rI 01‘ ~hc more sophislicitted algoriIhms 10 
see ii’ 111~ added complexity 01‘ ~hcsc irlgorilhms is war- 
ranled. Bcsidc DBfUlN, WS (the working scl algo- 
rithm), and HOT (Ihe hoI se1 algoriIhm) wcrc included 
in Ihc second group. WS is one of the most eflicicnl 
memory policies Ibr virtual memory sysccms [Denn7X]. 
II is inlriguing lo know how well it pcrlorms when 
applied !o darahase syslcms. The hoI sel algorithm was 

chosen IO reprcscnl rhc nlgoriIhms Ihal have previously 
hccn proposed i’or dutahase systems. 

All the algorithms in rhc iirsr group are glohal 
algorithms in the sense thaI the rcplacemcnl discipline 
is applied globally LO all the hullers in the system. 
Common to all three algorilhms is a global Iahle thaI 
conlains, for each buffer, the identity of the residing 
page, and a flag indicating whether the buffer has an 
I/O operation in progress. Additional data structures or 
ilags may be needed depending on the individual algo- 
rithm. Implementations of RAND and FIFO are rypi- 
cal, and need no further explanation. The CLOCK 
algorithm used in the experiments gives preferential 
lrealmcnl to dirty pages, i.e. pages that have been modi- 
lied. During the first scan, an unreferenced dirty page 
is scheduled for wriring, whereas an unreferenced clean 
page is immcdialely chosen lor replacement. If no suiI- 
able hufrer is found in rhc firs1 complcrc scan, dirty and 
clean pages are trcalcd equally during Ihe second scan. 
None of Ihc Ihrcc algorithms has a built-in facility for 
load control. However, we will investigate later how a 
load conIrollcr may he incorporated and whal its effects 
are on Ihc pcrlormancc of Ihcsc algorithms. 

The algorithms in the second group arc all local 
policies, in which rcplaccmenI decisions arc made 
locally. ‘l’hcrc is ii local Iahlc associaled with each 
query or lilt insluncc lor niainlrlining iIs I-csidcnt scI. 
Bul’fcrs Ihar do noI hclong LO tiny rcsidcnI set arc placed 
in ii global LRll IisI. ‘1’0 iillo\v for daU sharing among 
concurrcnl queries, a glohiil tahlc, similar lo Ihc one for 
the glohiil irlgorilhms, is also mainIuincd hy each 01‘ ~hc 
IOCijI algorilhms in the second group. When a page is 
rcqucslc%l, Ihc global Iahlc is scarchcd IirsI, and then 
Ihe approprialc local Iithlc is ad,juslcd if necessary. AS 
iill oplimizalion, :in asynchronous wriIe operarion is 
~~hedulcd whcncvcr a dirIy page is released hack IO rhc 
glohul Ircc IisI. All three algorithms in Ihe second 
group hasc Ihcir load control on ~hc IesIimirced) memory 
demands of the suhmillcd qucrics. A new query is 
acIivaIcd il‘ Ihcrc is sul‘licicni I‘rcc space 1~1‘1 in the sys 
(cm. On Ihc olhcr hand, an iicIivc query is suspcndcd 
when over-commimicnI 01‘ main rncmory hiis hcen 
deleclcd. WC ;rdopIed the dcaclivalion rule implcmcnIed 
in the VhJOS opcraling sysl~m [ Fogc74j in which llic 
IlrulIing p~.occss (i.c. IIIV process Ihat was iisking l01 

more memory) is chosen for suspension I’). In Ihc 1’01 
lowing scclion, WC discuss implcmcntiGon decisions 
thaI iirc pcrlincnl IO each individual algorirhm in lhc 
second group. 
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Working Set Algorithm 
‘I‘0 make WS more competitive, a Iwo-parameler 

WS algorithm was implemented. That is, each process 
is given one of the Iwo window sizes depending on 
which is more advantageous to it. The Iwo window 
sizes, 71 = lOms and 72 = ISms, were determined 
from an analysis oi’ working SCI f’unctions on the 
sin&-query tract! strings. Inslead of computing the 
working se1 of’ a query aficr each page access, Ibe algo- 
rithm rc-calculaics Ihe working se1 only when the query 
encounlers a page fauh or has used up iIs current time 
quantum. 

Hot Set Algorithm 
The ho1 se1 algorithm was implemcnlcd according 

IO Ihc oullinc dcscrihcd in [Sacc82]. The ho1 se1 sizes 
associalcd with the base queries were hand-calculated 
according to the hot ser model (see Tahle 2 ahovc). 
They were then stored in a lablc, which is accessible IO 

the buffer manager al simulation lime. 

DBMIN Algorithm 
The locality set size and Ihe rcplaccmcni policy for 

each file instance wcrc manually dclermincd. They 
wcrc then passed (by the program thai implemented the 
query) to the trace string recorder al the appropriate 
poin1s when Ihc single-query trace srrings were 
recorded. AI simulalion lime, the DBMIN algorirhm 
uses the inf’ormation recorded in rhc lracc strings to 
determine the proper rcsidcnl XI size and rcplaccmcn1 
discipline for a file inslance 31 Ihc lime the lilt is 
opened. 

4.3. Simulation Results 
Although comparing Ihc pcrlbrmancc of’ the algo- 

rithms tbr different query types provides insighl inlo lhc 
efficiency of’ each individual algorilhm, i1 is more 
interesling IO compare their perl’ormancc under a work- 
load consisring of a mixture of’ query lypes”. Three 
query mixes were defined lo cover a wide range 01 
workloads: 

M 1 - in which all six query types are equally likely 
IO he requested; 

M2 - in which one of’thc Iwo simple qucrics (I and 
II) is chosen hall’ the lime; 

h43 - in which the IWO simple qucrics have a com- 
hincd prohahility of 75% . 

The specific probahilily dislrihutions for the three query 
mixes is shown in Tahlc 4. 

~~ 

(in ‘8,) 

Composition of Query Mixes 
Table 4 

The lirst SCI of L~SIS were conducted withou1 any 
daIa sharing herween concurrcnUy executing queries. 
In Figure 2, the throughput for the six buffer manage- 
men1 algorithms is presented for each mix 01‘ queries. 
In each graph, the x axis is Ihe number of’ concurrcnl 
queries (NCQ) and the y axis is the throughput of Ihe 
sysIem measured in queries per second. The prcsencc 
of thrashing i’or the Ihree simple algorithms is cvi- 
den1”. A rclarivcly sharp dcgradalion in performance 
can he ohservcd in mosI casts. RAND and FIFO 
yielded 1hc worsl perlormancc, allhough RAND is 
perhaps more s1ahlc Ihan FIFO in Ihc scnsc’ Ihan i1s 
curve is slighlly smoolhcr Ihan 1ha1 of‘ FIFO. Bcfbrc 
severe Ihrashing occurred, CLOCK was generally hctIcr 
than horh RAND and FIFO. 

WS did nor perfbrm well hccnusc i1 failed IO cap- 

ture Ihc main loops of’ Ihc joins in queries V and VI. 
IIS performance improved as the frequency of’ qucrics V 
and VI decreased. The cl’licicncy of’ 111~ hoI SCI algo- 
rilhm was close lo Ihal of DBMIN. When lhc syslcm 
was lightly loaded, DBMIN was only marginally hcIIcr 
than Ihc rcsl of rhe algorilhms. However, as rhc 
number 01‘ concurrenl qucric’s increased IO 8 or more, 
DBMIN provided more Ihroughpul than ~hc hot SCI 
algorithm hy 7 lo 1.3 !;i ” and Ihc WS algorirhm hy 25 IO 
45% - . 

Effect of Datit Sharing 
To sIudy ~hc cf’licrs of daIa shuring on ~hc pcrfor- 

mancc 01’ ~hc algorithms, IWO more sets 01‘ cxperimcnls, 
each wiIh a dil’fcrcnl dcgrcc of daIa sharing, wcrc con- 
ducIcd. The rcsulIs ;irc ploIIcd in Figures 3 and 4. II 
can hc ohscrvcd Ihal, Ibr c~h of’ lhc algorithms, the 
IhroughpuI increases as ~hc dcgrcc of‘ daIa sharing 
increases. ‘l‘his reinforces 111~ view IhaI allowing for 
data sharing among concurrcnl queries is imporlanl in a 
mulli-programmed daIahitSe syslcm [ Rei17hj [ BoraX4j. 
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The relative performance of the algorithms for half 
dau sharing is similar to that for no data sharing. 
However, it is not the case for full data sharing. For 
query mixes M 1 and M2, the efficiencies of the dif- 
ferent algorithms were close. Because every query 
accessed the same copy of the database, it was easy for 
any algorithm to keep the important portion of the 
database in memory. With no surprises, RAND and 
FIFO performed slightly worse than other algorithms 
due to their inherent deficiency in capturing locality of 
reference. For query mix M3, however, the perfor- 
mance of the different algorithms again diverged. This 
may be attributed to the fact that small queries dom- 
inated the performance for query mix M3. The “work- 
ing” portion of the database becomes less distinct as 
many small queries are entering and leaving the system. 
( In contrast, the larger queries, which intensively 
access a limited set of pages over a relatively long 
period of time, played a more important role for query 
mixes Ml and M2.) Therefore, algorithms that made 
an effort to identify the localities performed better than 
those that did not. 

Effect of Load Control 
As was observed in the previous experiments, the 

lack of load control in the simple algorithms had led to 
thrashing under high workloads. II is interesting to find 
out how effective those algorithms will be when a load 
controller is incorporated. The “50% rule” [Lero76], 
in which the utilization of the paging device is kept busy 
about half the time, was chosen partly for its simplicity 
of implementation and partly because it is supported hy 
empirical evidence [Denn76]. 

A load controller which is based on the “50% 
rule” usually consists of three major components: 

(1) an estimator that measures the utilization of 
the device, 

(2) an optimizer thar analyzes the measurements 
provided by the estimator and decides what load 
adjustment is appropriate, and 

(3) a control switch rhar activates or deactivates 
processes according to the decisions made by the 
optimizer. 

In Figure 5, the effects of a load control mechanism on 
the three simple buffer management algorithms is 
shown. A set of initial experiments established that 
throughput was maximized with a disk utilization of 
87%. With load control, every simple algorithm in the 
experiments out-performed the WS algorithm. The pr- 
formance of the CLOCK algorithm with load control 
came very close to that of the hot set algorithm. How- 
ever, the results should not be interpreted literally. 
There are several potential problems with such a load 
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control mechanism which arise from the feedback 
nature of the load controller: 

(I) Run-time overhead can be expensive if sampling is 
done too frequently. On the other hand, the 
optimizer may not respond fast enough to adjust 
the load effectively if analyses of the measurements 
are not done frequently enough. 

(2) Unlike the predictive load controllers, a feedback 
controller can only respond after an undesirable 
condition has been detected. This may result in 
unnecessary process activations and deactivations 
that might otherwise be avoided by a predictive 
load control mechanism. 

(3) A feedback load controller does not work well in 
an environments with a large number of small 
transactions which enter and leave the system 
before their effects can be assessed. This effect 
can be seen in Figure 5 as the percentage of small 
queries increases. Note that the so-called “small 
queries” (i.e. queries I and II) in our experiments 
still retrieve 100 tuples from the source relation. 
The disadvantages of a feedhack load controller are 
likely to become even more apparent in a system 
wilh a large number of single-tuple queries. 

5. Conclusions 
In this paper we presented a new algorithm, 

DBMIN, for managing the huffcr pool of a relational 
database management system. DBMIN is based on a 
new model of relational query behavior, the query 
locality set model (QLSM). Like the hot ser model, 
the QLSM allows a buffer manager to predicl fulure 
reference hehavior. However, unlike the hot set model, 
the QLSM separates the modeling of referencing 
behavior from any particular buffer managemenl algo- 
rilhm. The DBMIN algorithm manages the huffer pool 
on a per file basis. The number of huffers allocated to 
each file instance is based on the locality set size of the 
file instance and will varies depending on how the iile is 
being accessed. In addition, the buffer pool associated 
with each file instance is managed hy a replacement 
policy thal is tuned to how the file is heing acccsscd. 

WC also prescntcd a performance evalualion 
methodology for evalualing buffer managcmenl algo- 
rithms in a multiuser environmenl. This methodology 
employed a hybrid model that combines fealurcs of both 
trace driven and distribution driven simulation models. 
Using lhis model, we compared the performance of six 
buffer management algorithms. Scvcrr thrashing was 
observed for the three simple algorithms: RAND, 
FIFO, and CLOCK. Although the inlroduclion of a 
feedback load controller alleviated the problem, it 
created new potential problems. As expected, the three 
more sophisticated algorilhms - WS, HOT, and 
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DBMIN - performed better than the simple algorithms. 
However, the WS algorithm did not perform as well as 
“advertised” for virtual memory systems [Denn78]. 
The last two algorithms, HOT and DBMIN, were suc- 
cessful in demonstrating their efficiency. In com- 
parison, DBMIN provided 7 to 13% more throughput 
than HOT over a wide range of operating conditions for 
the tests conducted. 

In [Chou85] we also examined the overhead asso- 
ciated with each of the WS, HOT, and DBMIN algo- 
rithms. Based on our analysis, the cost of the WS algo- 
rithm is higher than that of HOT unless the page fault 
rare is kept very low. In comparison, DBMIN is less 
expensive lhan both WS and HOT as less usage statis- 
tics need to be maintained. 
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