Large Scale Machine Learning: k-NN, Perceptron & SVM

CS345a: Data Mining Jure Leskovec and Anand Rajaraman Stanford University

Supervised Machine Learning

Would like to do prediction: learn a function: y = f(x)

- Where y can be:
 - Real: Regression
 - Categorical: Classification
 - More complex:
 - Ranking, Structured prediction, etc.
- Data is labeled:
 - Have many pairs (x,y)

Large Scale Machine Learning

- We will talk about the following methods:
 - k-Nearest Neighbor (Instance based learning)
 - Perceptron algorithm
 - Support Vector Machines
 - Decision trees (lecture on Thursday by Sugato Basu from Google)
- How to efficiently train (build a model)?

Instance Based Learning

- Instance based learning
- Example: Nearest neighbor
 - Keep the whole training dataset: (x,y)
 - A query example x' comes
 - Find closest example(s) x*
 - Predict y*

1-Nearest Neighbor

- To make things work we need 4 things:
 - Distance metric:
 - Euclidean
 - How many neighbors to look at?
 - One
 - Weighting function (optional):
 - Unused
 - How to fit with the local points?
 - Just predict the same output as the nearest neighbor

Distance metrics

- Suppose $x_1,...,x_m$ are two dimensional:
 - $x_1 = (x_{11}, x_{12}), x_2 = (x_{21}, x_{22}), ...$
- One can draw nearest neighbor regions:

$$d(x_{i_1}x_{j_1})=(x_{i_1}-x_{j_1})^2+(x_{i_2}-x_{j_2})^2$$

$$d(x_{i,x_{j}})=(x_{i_{1}}-x_{i_{1}})^{2}+(3x_{i_{2}}-3x_{i_{2}})^{2}$$

k-Nearest Neighbor

- Distance metric:
 - Euclidean
- How many neighbors to look at?
 - k
- Weighting function (optional):
 - Unused
- How to fit with the local points?
 - Just predict the average output among k nearest neighbors

k=9

Kernel regression

- Distance metric:
 - Euclidean
- How many neighbors to look at?
 - All of them
- Weighting function:
 - $w_i = \exp(-d(x_i, q)^2/K_w)$
 - Nearby points to query q are weighted more strongly. K_w...kernel width.
- How to fit with the local points?
 - Predict weighted average: $\sum w_i y_i / \sum w_i$

How to find nearest neighbors?

- Given: a set P of n points in R^d
- Goal: Given a query point q:
 - NN: find the nearest neighbor p of q in P
 - Range search: find one/all points in P within distance r from q

Algorithms for NN

- Main memory:
 - Linear scan
 - Tree based:
 - Quadtree
 - kd-tree
 - Hashing:
 - Locality-Sensitive Hashing
- Secondary storage:
 - R-trees

Quadtree (d=~3)

- Simplest spatial structure on Earth!
- Split the space into 2^d equal subsquares
- Repeat until done:
 - only one pixel left
 - only one point left
 - only a few points left
- Variants:
 - split only one dimension at a time
 - kd-trees (in a moment)

Quadtree: Search

Range search:

- Put root node on the stack
- Repeat:
 - pop the next node T from the stack
 - for each child C of T:
 - if C is a leaf, examine point(s) in C
 - if C intersects with the ball of radius r around q, add C to the stack

Nearest neighbor:

- Start range search with $r = \infty$
- Whenever a point is found, update r
- Only investigate nodes with respect to current r

- Great in 2 or 3 dimensions
- Nodes have 2^d

parents

Space issues:

Kd-tree ($d=\sim10$)

- Main ideas [Bentley '75]:
 - Only one-dimensional splits
 - Choose the split "carefully" (many variations)
 - Queries: as for quadtrees
- Advantages:
 - no (or less) empty spaces
 - only linear space
- Query time at most:
 - Min[dn, exponential(d)]

R-trees ($d=\sim20$)

- "Bottom-up" approach [Guttman 84]:
 - Start with a set of points/rectangles
 - Partition the set into groups of small cardinality
 - For each group, find minimum rectangle containing objects from this group (MBR)
 - Repeat
- Advantages:
 - Supports near(est) neighbor search (similar as before)
 - Works for points and rectangles
 - Avoids empty spaces

R-trees (1)

- R-trees with fan-out 4:
 - group nearby rectangles to parent MBRs

R-trees (2)

- R-trees with fan-out 4:
 - every parent node completely covers its 'children'

R-trees (3)

- R-trees with fan-out 4:
 - every parent node completely covers its 'children'

R-trees: Range search

Example of a range search query

R-trees: Range search

Example of a range search query

Linear models: Perceptron

Example: Spam filtering

	viagra	learning	the	dating	nigeria	spam?
$\vec{x}_1 = ($	1	0	1	0	0)	$y_1 = 1$
$\vec{x}_2 = ($	0	1	1	0	0)	$y_2 = -1$
$\vec{x}_3 = ($	0	0	0	0	1)	$y_3 = 1$

- Instance space X:
 - Feature vector of word occurrences (binary, TF-IDF)
 - d features (d~100,000)
- Class Y:
 - Spam (+1), Ham (-1)

Perceptron [Rosenblatt '57]

- Very loose motivation: Neuron
- Inputs are feature values
- Each feature has a weight w
- Activation is the sum:
 - $f(x) = \sum_i w_i \cdot x_i = w \cdot x$
- If the f(x) is:
 - Positive: predict +1
 - Negative: predict -1

Multiclass Perceptron

- If more than 2 classes:
 - Weight vector w_c for each class
 - Calculate activation for each class

•
$$f(x,c) = \sum_i w_{c,i} \cdot x_i = w_c \cdot x$$

- Highest activation wins:
 - $c = arg max_c f(x,c)$

Learning the model

Define a model:

Perceptron: $y = sign(w \cdot x)$

Define a loss function:

$$L(w) = -\sum_{i} y_{i} \cdot w \cdot x_{i}$$

- Minimize the loss:
 - Compute gradient L'(w) and optimize:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \cdot \mathbf{L}'(\mathbf{w}) = \mathbf{w}_t - \lambda_t \cdot \sum_{i=1}^{m} d\mathbf{L}(\mathbf{y}_i \cdot \mathbf{w} \cdot \mathbf{x}_i) / d\mathbf{w}$$
(Batch gradient descent)

Stochastic Gradient Descent

- Stochastic gradient descent:
 - Examples are drawn from a finite training set
 - Pick random example x_i and update

$$W_{t+1} = W_t - \eta_t \cdot dL(w \cdot x_i, y_i)/dw$$

	Cost per iteration	Time to reach accuracy ρ	Time for optimization error <ε
GD	O(m·d)	$O(m \cdot \kappa \cdot d \cdot \log(1/\rho))$	$O(\kappa \cdot d^2/\epsilon \cdot \log^2(1/\epsilon))$
2 nd order GD	O(d(d+m))	$O(m \cdot d \cdot \log \log(1/\rho))$	$O(d^2/\epsilon \cdot \log(1/\epsilon) \cdot \log \log(1/\epsilon))$
Stochastic GD	O(d)	O(κ·d/ρ)	O(κ·d/ε)

m... number of examples

d... number of features

κ... condition number

[Bottou-LeCun '04]

Perceptron: Estimating w

- Start with w=0
- Pick training examples x one by one
- Predict class of x using current weights
 - $y' = sign(w \cdot x)$
- If y' is correct:
 - no change
- If y' is wrong: adjust w
 - $w_{t+1} = w_t + \eta \cdot y \cdot x$
 - η is the learning rate parameter
 - x is the training example
 - y is true class label

Properties of Perceptron

- Separability: some parameters get training set perfectly
- Convergence: if training set is separable, perceptron will converge (binary case)
- Mistake bound: number of mistakes (binary case) related to the margin or degree of separability γ:
 - mistakes < 1/γ²

Separable

Non-Separable

Issues with Perceptrons

- Overfitting:
- Regularization: if the data is not separable weights dance around
- Mediocre generalization:
 - Finds a "barely" separating solution

Support Vector Machines

Which is best linear separator?

Support Vector Machine

Maximize the margin:

Good according to intuition, theory & practice

$$\max_{w} \gamma$$

$$s.t. \forall i, y_i \cdot x_i \cdot w \ge \gamma$$

Since:

$$\gamma = \frac{1}{\sqrt{w \cdot w}}$$

$$\min_{w} ||w||^{2}$$

$$s.t. \forall i, y_{i} \cdot x_{i} \cdot w \ge 1$$

SVM with "hard" constraints

Support Vector Machines

If not separable introduce slack variables ξ:

argmin
$$\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{m} \xi_i$$

s.t. $\forall i, y_i \langle \mathbf{w}, \mathbf{x}_i \rangle \geq 1 - \xi_i$

Or in the "natural" form:

$$\underset{\mathbf{w}}{\mathsf{argmin}} f(\mathbf{w}) \qquad \text{where:}$$

$$f(\mathbf{w}) \stackrel{\text{def}}{=} \frac{\lambda}{2} ||\mathbf{w}||^2 + \frac{1}{m} \sum_{i=1}^m \max\{0, 1 - y_i \langle \mathbf{w}, \mathbf{x}_i \rangle\}$$

Regularization term

Empirical loss

SVM: How to estimate w

Use quadratic solver:

- $\underset{\mathbf{w},\xi_i \ge 0}{\operatorname{argmin}} \ \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{m} \xi_i$
- Minimize quadratic function s.t. $\forall i, \ y_i \langle \mathbf{w}, \mathbf{x}_i \rangle \geq 1 \xi_i$
- Subject to linear constraints
- Stochastic gradient descent:
 - Minimize:

$$f(\mathbf{w}) \stackrel{\text{def}}{=} \frac{\lambda}{2} ||\mathbf{w}||^2 + \frac{1}{m} \sum_{i=1}^{m} \max\{0, 1 - y_i \langle \mathbf{w}, \mathbf{x}_i \rangle\}$$

Update:

$$w \leftarrow w - \eta_t f'(w) = w - \eta_t \left(\lambda w + \frac{\partial L(wx_t, y_t)}{\partial w} \right)$$

Example: Text categorization

- Example by Leon Bottou:
 - Reuters RCV1 document corpus
 - m=781k training examples, 23k test examples
 - d=50k features

Training time:

	Training Time	Primal cost	Test Error
SVMLight	23,642 secs	0.2275	6.02%
SVMPerf	66 secs	0.2278	6.03%
SGD	1.4 secs	0.2275	6.02%

Optimization accuracy

Subsampling

- What if we subsample the dataset?
 - SGD on full dataset vs.
 - Conjugate gradient on n training examples

Average Test Loss

Practical considerations

Need to choose learning rate η:

$$W_{t+1} \leftarrow W_t - \eta_t L'(w)$$

- Leon suggests:
 - Select small subsample
 - Try various rates η
 - Pick the one that most reduces the loss
 - Use η for next 100k iterations on the full dataset

Practical considerations

- Stopping criteria:
 - How many iterations of SGD?
 - Early stopping with cross validation
 - Create validation set
 - Monitor cost function on the validation set
 - Stop when loss stops decreasing
 - Early stopping a priori
 - Extract two disjoint subsamples A and B of training data
 - Determine the number of epochs k by training on A, stop by validating on B
 - Train for k epochs on the full dataset

Practical considerations

- Kernel function: $K(x_i, x_i) = \phi(x_i) \cdot \phi(x_i)$
- Does the SVM kernel trick still work?
- Yes (but not without a price)
 - Represent w with its kernel expansion:

$$\Sigma_{i} \alpha_{i} \cdot \phi(x_{i})$$

Usually:

$$dL(w)/dw = -\mu \cdot \phi(x_i)$$

• Then update w at epoch t by combining α :

$$\alpha_t = (1 - \eta \cdot \lambda) \alpha_t + \mu \cdot \lambda$$

PEGASOS

INPUT: training set
$$S = \{(\mathbf{x}_1, u_1), (\mathbf{x}_m, u_m)\}$$
, where $\mathbf{x}_t = \mathbf{x}_t$ and $\mathbf{x}_t = \mathbf{x}_t$ and $\mathbf{x}_t = \mathbf{x}_t$ and $\mathbf{x}_t = \mathbf{x}_t$ and $\mathbf{x}_t = \mathbf{x}_t$ ber of iterations in the state of iterations. Initialize: Choose \mathbf{w}_1 s.t. $\|\mathbf{w}_1\| \leq 1/\sqrt{\lambda}$ for $t = 1, 2, \ldots, T$
$$\begin{cases} \text{Choose } A_t \subseteq S \\ A_t^+ = \{(\mathbf{x}, y) \in A_t : y \langle \mathbf{w}_t, \mathbf{x} \rangle < 1\} \\ \nabla_t = \lambda \mathbf{w}_t - \frac{\eta_t}{|A_t|} \sum_{(\mathbf{x}, y) \in A_t^+} y \mathbf{x} \\ \eta_t = \frac{1}{t\lambda} \\ \mathbf{w}_t' = \mathbf{w}_t - \eta_t \nabla_t \end{cases}$$
 Projection $\Leftrightarrow \mathbf{w}_{t+1} = \min \left\{ 1, \frac{1/\sqrt{\lambda}}{\|\mathbf{w}_t'\|} \right\} \mathbf{w}_t'$

OUTPUT: \mathbf{w}_{T+1}

Run-Time of Pegasos

- Choosing $|A_t|=1$ and a linear kernel over R^n
- Theorem [Shalev-Shwartz et al. '07]:
 - Run-time required for Pegasos to find ϵ accurate solution with prob. >1- δ

$$\tilde{O}\left(\frac{n}{\delta \lambda \epsilon}\right)$$

- Run-time depends on number of features n
- Does not depend on #examples m
- Depends on "difficulty" of problem (λ and ϵ)