Mining Data Streams (Part 1)

CS345a: Data Mining

Jure Leskovec and Anand Rajaraman
Stanford University




Data Streams

In many data mining situations, we know
the entire data set in advance

Sometimes the input rate is controlled
externally

Google queries
Twitter or Facebook status updates



The Stream Model

Input tuples enter at a rapid rate, at one or

more input ports.
The system cannot store the entire stream

accessibly.
How do you make critical calculations about

the stream using a limited amount of
(secondary) memory?



Ad-Hoc
Queries

...1,5,2,7,0,9,3 Standing
Queries Output

a,nv,tyhb

...0,0,1,0,1,1,0

«— time

Streams Entering

N
Limited ~_
Working
Storage Archival
. Storage

~_



Applications — (1)

Mining query streams

Google wants to know what queries are more
frequent today than yesterday
Mining click streams
Yahoo wants to know which of its pages are
getting an unusual number of hits in the past hour
Mining social network news feeds

E.g., Look for trending topics on Twitter, Facebook



Applications — (2)

Sensor Networks

Many sensors feeding into a central controller
Telephone call records

Data feeds into customer bills as well as
settlements between telephone companies

IP packets monitored at a switch
Gather information for optimal routing
Detect denial-of-service attacks



Data Stream Problems

2/1

6/2010

Sampling data from a stream
Filtering a data stream
Queries over sliding windows
Counting distinct elements
Estimating moments

Finding frequent elements
Frequent itemsets

eeeeeee kovec & Anand Rajaraman, Stanford CS345a: Data Mining



Sampling from a Data Stream

Since we can’t store the entire stream, one
obvious approach is to store a sample
Two different problems:

Sample a fixed proportion of elements in the
stream (say 1 in 10)

Maintain a random sample of fixed size over a
potentially infinite stream

2/16/2010 Jure Leskovec & Anand Rajaraman, Stanford CS345a: Data Mining



Sampling a fixed proportion

Scenario: search engine query stream
Tuples: (user, query, time)

Answer questions such as: how often did a user
run the same query on two different days?

Have space to store 1/10% of query stream
Naive solution

Generate a random integer in [0..9] for each query

Store query if the integer is 0, otherwise discard

2/16/2010 Jure Leskovec & Anand Rajaraman, Stanford CS345a: Data Mining



Problem with naive approach

Consider the question: What fraction of

gueries by an average user are duplicates?

Suppose each user issues s queries once and

d queries twice (total of s+2d queries)
Correct answer: d/(s+2d)

Sample will contain s/10 of the singleton queries
and 2d/10 of the duplicate queries at least once

But only d/100 pairs of duplicates
So the sample-based answer is: d/(10s+20d)

2/16/2010 Jure Leskovec & Anand Rajaraman, Stanford CS345a: Data Mining 10



Solution

Pick 1/10th of and take all their searches
in the sample

Use a hash function that hashes the user
name or user id uniformly into 10 buckets

2/16/2000 Jureles kovec & Anand Rajaraman, Stan ford CS345a : Data Mining



Generalized Solution

Stream of tuples with keys
Key is some subset of each tuple’s components
E.g., tuple is (user, search, time); key is
Choice of key depends on application

To get a sample of size a/b
Hash each tuple’s key uniformly into b buckets
Pick the tuple if its hash value is at most a

2/16/2010 Jure Leskovec & Anand Rajaraman, Stanford CS345a: Data Mining 12



Maintaining a fixed-size sample

Suppose we need to maintain a sample of size
exactly s

E.g., main memory size constraint
Don’t know length of stream in advance

In fact, stream could be infinite
Suppose at time t we have seen n items

Ensure each item is in sample with equal
probability s/n

2/16/2010 Jure Leskovec & Anand Rajaraman, Stanford CS345a: Data Mining 13



Solution

Store all the first s elements of the stream
Suppose we have seen n-1 elements, and now
the nt" element arrives (n > s)

With probability s/n, pick the n?" element, else
discard it

If we pick the n" element, then it replaces one of
the s elements in the sample, picked at random

Claim: this algorithm maintains a sample with
the desired property

2/16/2010 Jure Leskovec & Anand Rajaraman, Stanford CS345a: Data Mining 14



Proof: By Induction

2/1

6/2010

Assume that after n elements, the sample
contains each element seen so far with
probability s/n

When we see element n+1, it gets picked with
probability s/(n+1)

For elements already in the sample,
probability of remaining in the sample is:

S S s—1 n

¢ )+ (—)(—) =

n—+1 n+l s n—+1

ure Leskovec & Anand Rajaraman, Stanford CS345a: Data Mining




Sliding Windows

A useful model of stream processing is that
gueries are about a window of length N — the
N most recent elements received.

Interesting case: N is so large it cannot be
stored in memory, or even on disk.

Or, there are so many streams that windows for
all cannot be stored.



gwertyuiopasdfglhj

gwertyuioppsdfgh]j

gwertyuiopa;

dfghj

S

gwertyuiopas

«— Past

klzxcvbnm

klzxcvbnm

klzxcvbnm

fghj

lzxcvbnm

Future —

17



Counting Bits — (1)

: given a stream of 0’s and 1’s, be

prepared to answer queries of the form “how
many 1’s in the last k bits?” where k < N.

. store the most recent N
bits.

When new bit comes in, discard the N +1st bit.



Counting Bits — (2)

You can’t get an exact answer without

storing t
Real Pro
store N

ne entire window.
olem: what if we cannot afford to

0its?

E.g., we're processing 1 billion streams and
N =1 billion

But we’re happy with an approximate

dNSWer.



DGIM* Method

Store O(log?N ) bits per stream.
Gives approximate answer, never off by more
than 50%.

Error factor can be reduced to any fraction > 0,
with more complicated algorithm and
proportionally more stored bits.

*Datar, Gionis, Indyk, and Motwani

20



Something That Doesn’t (Quite)

Work

Summarize exponentially increasing
regions of the stream, looking backward.
Drop small regions if they begin at the
same point as a larger region.



Summarize blocks of stream with specific
numbers of 1’s.

Block sizes (number of 1’s) increase
exponentially as we go back in time



Example: Bucketized Stream

At least 1 of 2 of 2 of 1 of 2 of
size 16. Partially size 8 size 4 size2 size 1

beyond Ivindow. /\ /\ \

1001010110001011010101010101011011010101010111j01010101110101/000(1 O 1t JO

g »
) N "

23



Each bit in the stream has a timestamp,
starting 1, 2, ...

Record timestamps modulo N (the window
size), SO we can represent any

timestamp in O(log,N ) bits.



Buckets

A bucket in the DGIM method is a record
consisting of:
The timestamp of its end [O(log N ) bits].

The number of 1’s between its beginning and
end [O(log log N ) bits].
: number of 1’s must
be a power of 2.

That explains the log log N in (2).



Representing a Stream by Buckets

Either one or two buckets with the same
power-of-2 number of 1’s.

Buckets do not overlap in timestamps.
Buckets are sorted by size.

Earlier buckets are not smaller than later
buckets.
Buckets disappear when their end-time is >

N time units in the past.



Updating Buckets — (1)

When a new bit comes in, drop the last
(oldest) bucket if its end-time is prior to N
time units before the current time.

If the current bit is O, no other changes are
heeded.



Updating Buckets — (2)

If the current bit is 1:
Create a new bucket of size 1, for just this bit.

End timestamp = current time.

If there are now three buckets of size 1, combine
the oldest two into a bucket of size 2.

If there are now three buckets of size 2, combine
the oldest two into a bucket of size 4.

And so on ...

28



Example

1001010110001011¢j10101010101011

0010101010111

0101010

110101

000101

001010110001011

D

0101010101011D7

010101010111D7

010101

10101

D00 O

001010110001011

D

0101010101011D7

01010101011107

010101

10101

D00 O

010110001011

D

0101010101011

)

010101010111

-

010101

10101

D00

011001

010110001011

D

0101010101011

)

010101010111

-

010101

10101

D00

011001

010110001011

D

010101010101101010101010111

-

010101110101

D00

011001

D

29



Querying

To estimate the number of 1’s in the most
recent N bits:

Sum the sizes of all buckets but the last.
Add half the size of the last bucket.

: we don’t know how many 1’s of
the last bucket are still within the window.



Example: Bucketized Stream

At least 1 of 2 of 2 of 1 of 2 of
size 16. Partially size 8 size 4 size2 size 1

beyond Ivindow. /\ /\ \

1001010110001011010101010101011011010101010111j01010101110101/0001 O1[t JO

g »
) N "

31



Suppose the last bucket has size 2.

Then by assuming 2%-1 of its 1’s are still
within the window, we make an error of at
most 2k-1.

Since there is at least one bucket of each of
the sizes less than 2%, the true sum is at
least 1+ 2 + .. +2Kk1 =2k_1,

Thus, error at most 50%.



Extensions

Can we use the same trick to answer queries
“How many 1’s in the last k ?” where k<N ?

Can we handle the case where the stream is
not bits, but integers, and we want the sum of
the last k ?



Reducing the Error

2/1

6/2010

Instead of maintaining 1 or 2 of each size
bucket, we allow eitherr-1orrforr>?2

Except for the largest size buckets; we can have
any number between 1 and r of those

Error is at most by 1/(r-1)
By picking r appropriately, we can tradeoff
between number of bits and error

eeeeeee kovec & Anand Rajaraman, Stanford CS345a: Data Mining



