
CS345a: Data Mining

Jure Leskovec and Anand Rajaraman
Stanford University

Mining Data Streams (Part 1)



2

� In many data mining situations, we know 

the entire data set in advance

� Sometimes the input rate is controlled 

externally 

� Google queries

� Twitter or Facebook status updates
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� Input tuples enter at a rapid rate, at one or 

more input ports.

� The system cannot store the entire stream 

accessibly.

� How do you make critical calculations about 

the stream using a limited amount of 

(secondary) memory?
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� Mining query streams

� Google wants to know what queries are more 

frequent today than yesterday

� Mining click streams

� Yahoo wants to know which of its pages are 

getting an unusual number of hits in the past hour

� Mining social network news feeds

� E.g., Look for trending topics on Twitter, Facebook
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� Sensor Networks 

� Many sensors feeding into a central controller

� Telephone call records 

� Data feeds into customer bills as well as 

settlements between telephone companies

� IP packets monitored at a switch

� Gather information for optimal routing

� Detect denial-of-service attacks



� Sampling data from a stream

� Filtering a data stream

� Queries over sliding windows

� Counting distinct elements

� Estimating moments

� Finding frequent elements

� Frequent itemsets
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� Since we can’t store the entire stream, one 

obvious approach is to store a sample

� Two different problems:

� Sample a fixed proportion of elements in the 

stream (say 1 in 10)

� Maintain a random sample of fixed size over a 

potentially infinite stream
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� Scenario: search engine query stream

� Tuples: (user, query, time)

� Answer questions such as: how often did a user 

run the same query on two different days?

� Have space to store 1/10th of query stream

� Naïve solution

� Generate a random integer in [0..9] for each query

� Store query if the integer is 0, otherwise discard  
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� Consider the question: What fraction of 

queries by an average user are duplicates?

� Suppose each user issues s queries once and 

d queries twice (total of s+2d queries)

� Correct answer: d/(s+2d)

� Sample will contain s/10 of the singleton queries 

and 2d/10 of the duplicate queries at least once

� But only d/100 pairs of duplicates

� So the sample-based answer is: d/(10s+20d)
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� Pick 1/10th of users and take all their searches 

in the sample

� Use a hash function that hashes the user 

name or user id uniformly into 10 buckets

2/16/2010 Jure Leskovec & Anand Rajaraman, Stanford CS345a: Data Mining 11



� Stream of tuples with keys

� Key is some subset of each tuple’s components

� E.g., tuple is (user, search, time); key is user

� Choice of key depends on application

� To get a sample of size a/b

� Hash each tuple’s key uniformly into b buckets

� Pick the tuple if its hash value is at most a
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� Suppose we need to maintain a sample of size 

exactly s

� E.g., main memory size constraint

� Don’t know length of stream in advance

� In fact, stream could be infinite

� Suppose at time t we have seen n items

� Ensure each item is in sample with equal 

probability s/n
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� Store all the first s elements of the stream

� Suppose we have seen n-1 elements, and now 

the nth element arrives (n > s)

� With probability s/n, pick the nth element, else 

discard it

� If we pick the nth element, then it replaces one of 

the s elements in the sample, picked at random

� Claim: this algorithm maintains a sample with 

the desired property
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� Assume that after n elements, the sample 

contains each element seen so far with 

probability s/n

� When we see element n+1, it gets picked with 

probability s/(n+1)

� For elements already in the sample, 

probability of remaining in the sample is:
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� A useful model of stream processing is that 

queries are about a window of length N – the 

N most recent elements received.

� Interesting case: N is so large it cannot be 

stored in memory, or even on disk.

� Or, there are so many streams that windows for 

all cannot be stored.
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� Problem: given a stream of 0’s and 1’s, be 

prepared to answer queries of the form “how 

many 1’s in the last k bits?” where k≤ N.

� Obvious solution: store the most recent N

bits.

� When new bit comes in, discard the N +1st bit.
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� You can’t get an exact answer without 

storing the entire window.

� Real Problem: what if we cannot afford to 

store N bits?

� E.g., we’re processing 1 billion streams and      

N = 1 billion

� But we’re happy with an approximate 

answer.
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� Store O(log2N ) bits per stream.

� Gives approximate answer, never off by more 

than 50%.

� Error factor can be reduced to any fraction > 0, 

with more complicated algorithm and 

proportionally more stored bits.

*Datar, Gionis, Indyk, and Motwani
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� Summarize exponentially increasing 

regions of the stream, looking backward.

� Drop small regions if they begin at the 

same point as a larger region.



22

� Summarize blocks of stream with specific 

numbers of 1’s.

� Block sizes (number of 1’s) increase 

exponentially as we go back in time
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� Each bit in the stream has a timestamp, 

starting 1, 2, …

� Record timestamps modulo N (the window 

size), so we can represent any relevant

timestamp in O(log2N ) bits.
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� A bucket in the DGIM method is a record 

consisting of:

1. The timestamp of its end [O(log N ) bits].

2. The number of 1’s between its beginning and 

end [O(log log N ) bits].

� Constraint on buckets: number of 1’s must 

be a power of 2.

� That explains the log log N in (2).
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� Either one or two buckets with the same 

power-of-2 number of 1’s.

� Buckets do not overlap in timestamps.

� Buckets are sorted by size.

� Earlier buckets are not smaller than later 

buckets.

� Buckets disappear when their end-time is > 

N time units in the past.
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� When a new bit comes in, drop the last 

(oldest) bucket if its end-time is prior to N

time units before the current time.

� If the current bit is 0, no other changes are 

needed.
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� If the current bit is 1:

1. Create a new bucket of size 1, for just this bit.

� End timestamp = current time.

2. If there are now three buckets of size 1, combine 

the oldest two into a bucket of size 2.

3. If there are now three buckets of size 2, combine 

the oldest two into a bucket of size 4.

4. And so on …
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� To estimate the number of 1’s in the most 

recent N bits:

1. Sum the sizes of all buckets but the last.

2. Add half the size of the last bucket.

� Remember: we don’t know how many 1’s of 

the last bucket are still within the window.
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� Suppose the last bucket has size 2k.

� Then by assuming 2k -1 of its 1’s are still 

within the window, we make an error of at 

most 2k -1.

� Since there is at least one bucket of each of 

the sizes less than 2k, the true sum is at 

least 1 + 2 + .. + 2k-1 = 2k -1.

� Thus, error at most 50%.
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� Can we use the same trick to answer queries 

“How many 1’s in the last k ?” where k < N ?

� Can we handle the case where the stream is 

not bits, but integers, and we want the sum of 

the last k ?



� Instead of maintaining 1 or 2 of each size 

bucket, we allow either r -1 or r for r > 2

� Except for the largest size buckets; we can have 

any number between 1 and r of those

� Error is at most by 1/(r-1)

� By picking r appropriately, we can tradeoff 

between number of bits and error
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