
CS345a: Data Mining

Jure Leskovec and Anand Rajaraman
Stanford University

Mining Data Streams (Part 1)

2

� In many data mining situations, we know

the entire data set in advance

� Sometimes the input rate is controlled

externally

� Google queries

� Twitter or Facebook status updates

3

� Input tuples enter at a rapid rate, at one or

more input ports.

� The system cannot store the entire stream

accessibly.

� How do you make critical calculations about

the stream using a limited amount of

(secondary) memory?

4

Processor

Limited

Working

Storage

. . . 1, 5, 2, 7, 0, 9, 3

. . . a, r, v, t, y, h, b

. . . 0, 0, 1, 0, 1, 1, 0

time

Streams Entering

Ad-Hoc

Queries

Output

Archival

Storage

Standing

Queries

5

� Mining query streams

� Google wants to know what queries are more

frequent today than yesterday

� Mining click streams

� Yahoo wants to know which of its pages are

getting an unusual number of hits in the past hour

� Mining social network news feeds

� E.g., Look for trending topics on Twitter, Facebook

6

� Sensor Networks

� Many sensors feeding into a central controller

� Telephone call records

� Data feeds into customer bills as well as

settlements between telephone companies

� IP packets monitored at a switch

� Gather information for optimal routing

� Detect denial-of-service attacks

� Sampling data from a stream

� Filtering a data stream

� Queries over sliding windows

� Counting distinct elements

� Estimating moments

� Finding frequent elements

� Frequent itemsets

2/16/2010 Jure Leskovec & Anand Rajaraman, Stanford CS345a: Data Mining 7

� Since we can’t store the entire stream, one

obvious approach is to store a sample

� Two different problems:

� Sample a fixed proportion of elements in the

stream (say 1 in 10)

� Maintain a random sample of fixed size over a

potentially infinite stream

2/16/2010 Jure Leskovec & Anand Rajaraman, Stanford CS345a: Data Mining 8

� Scenario: search engine query stream

� Tuples: (user, query, time)

� Answer questions such as: how often did a user

run the same query on two different days?

� Have space to store 1/10th of query stream

� Naïve solution

� Generate a random integer in [0..9] for each query

� Store query if the integer is 0, otherwise discard

2/16/2010 Jure Leskovec & Anand Rajaraman, Stanford CS345a: Data Mining 9

� Consider the question: What fraction of

queries by an average user are duplicates?

� Suppose each user issues s queries once and

d queries twice (total of s+2d queries)

� Correct answer: d/(s+2d)

� Sample will contain s/10 of the singleton queries

and 2d/10 of the duplicate queries at least once

� But only d/100 pairs of duplicates

� So the sample-based answer is: d/(10s+20d)

2/16/2010 Jure Leskovec & Anand Rajaraman, Stanford CS345a: Data Mining 10

� Pick 1/10th of users and take all their searches

in the sample

� Use a hash function that hashes the user

name or user id uniformly into 10 buckets

2/16/2010 Jure Leskovec & Anand Rajaraman, Stanford CS345a: Data Mining 11

� Stream of tuples with keys

� Key is some subset of each tuple’s components

� E.g., tuple is (user, search, time); key is user

� Choice of key depends on application

� To get a sample of size a/b

� Hash each tuple’s key uniformly into b buckets

� Pick the tuple if its hash value is at most a

2/16/2010 Jure Leskovec & Anand Rajaraman, Stanford CS345a: Data Mining 12

� Suppose we need to maintain a sample of size

exactly s

� E.g., main memory size constraint

� Don’t know length of stream in advance

� In fact, stream could be infinite

� Suppose at time t we have seen n items

� Ensure each item is in sample with equal

probability s/n

2/16/2010 Jure Leskovec & Anand Rajaraman, Stanford CS345a: Data Mining 13

� Store all the first s elements of the stream

� Suppose we have seen n-1 elements, and now

the nth element arrives (n > s)

� With probability s/n, pick the nth element, else

discard it

� If we pick the nth element, then it replaces one of

the s elements in the sample, picked at random

� Claim: this algorithm maintains a sample with

the desired property

2/16/2010 Jure Leskovec & Anand Rajaraman, Stanford CS345a: Data Mining 14

� Assume that after n elements, the sample

contains each element seen so far with

probability s/n

� When we see element n+1, it gets picked with

probability s/(n+1)

� For elements already in the sample,

probability of remaining in the sample is:

2/16/2010 Jure Leskovec & Anand Rajaraman, Stanford CS345a: Data Mining 15

(1−
s

n +1
) + (

s

n +1
)(

s −1

s

) =
n

n +1

16

� A useful model of stream processing is that

queries are about a window of length N – the

N most recent elements received.

� Interesting case: N is so large it cannot be

stored in memory, or even on disk.

� Or, there are so many streams that windows for

all cannot be stored.

17

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

Past Future

18

� Problem: given a stream of 0’s and 1’s, be

prepared to answer queries of the form “how

many 1’s in the last k bits?” where k≤ N.

� Obvious solution: store the most recent N

bits.

� When new bit comes in, discard the N +1st bit.

19

� You can’t get an exact answer without

storing the entire window.

� Real Problem: what if we cannot afford to

store N bits?

� E.g., we’re processing 1 billion streams and

N = 1 billion

� But we’re happy with an approximate

answer.

20

� Store O(log2N) bits per stream.

� Gives approximate answer, never off by more

than 50%.

� Error factor can be reduced to any fraction > 0,

with more complicated algorithm and

proportionally more stored bits.

*Datar, Gionis, Indyk, and Motwani

21

� Summarize exponentially increasing

regions of the stream, looking backward.

� Drop small regions if they begin at the

same point as a larger region.

22

� Summarize blocks of stream with specific

numbers of 1’s.

� Block sizes (number of 1’s) increase

exponentially as we go back in time

23

1001010110001011010101010101011010101010101110101010111010100010110010

N

1 of

size 2

2 of

size 4

2 of

size 8

At least 1 of

size 16. Partially

beyond window.

2 of

size 1

24

� Each bit in the stream has a timestamp,

starting 1, 2, …

� Record timestamps modulo N (the window

size), so we can represent any relevant

timestamp in O(log2N) bits.

25

� A bucket in the DGIM method is a record

consisting of:

1. The timestamp of its end [O(log N) bits].

2. The number of 1’s between its beginning and

end [O(log log N) bits].

� Constraint on buckets: number of 1’s must

be a power of 2.

� That explains the log log N in (2).

26

� Either one or two buckets with the same

power-of-2 number of 1’s.

� Buckets do not overlap in timestamps.

� Buckets are sorted by size.

� Earlier buckets are not smaller than later

buckets.

� Buckets disappear when their end-time is >

N time units in the past.

27

� When a new bit comes in, drop the last

(oldest) bucket if its end-time is prior to N

time units before the current time.

� If the current bit is 0, no other changes are

needed.

28

� If the current bit is 1:

1. Create a new bucket of size 1, for just this bit.

� End timestamp = current time.

2. If there are now three buckets of size 1, combine

the oldest two into a bucket of size 2.

3. If there are now three buckets of size 2, combine

the oldest two into a bucket of size 4.

4. And so on …

29

1001010110001011010101010101011010101010101110101010111010100010110010

0010101100010110101010101010110101010101011101010101110101000101100101

0010101100010110101010101010110101010101011101010101110101000101100101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

30

� To estimate the number of 1’s in the most

recent N bits:

1. Sum the sizes of all buckets but the last.

2. Add half the size of the last bucket.

� Remember: we don’t know how many 1’s of

the last bucket are still within the window.

31

1001010110001011010101010101011010101010101110101010111010100010110010

N

1 of

size 2

2 of

size 4

2 of

size 8

At least 1 of

size 16. Partially

beyond window.

2 of

size 1

32

� Suppose the last bucket has size 2k.

� Then by assuming 2k -1 of its 1’s are still

within the window, we make an error of at

most 2k -1.

� Since there is at least one bucket of each of

the sizes less than 2k, the true sum is at

least 1 + 2 + .. + 2k-1 = 2k -1.

� Thus, error at most 50%.

33

� Can we use the same trick to answer queries

“How many 1’s in the last k ?” where k < N ?

� Can we handle the case where the stream is

not bits, but integers, and we want the sum of

the last k ?

� Instead of maintaining 1 or 2 of each size

bucket, we allow either r -1 or r for r > 2

� Except for the largest size buckets; we can have

any number between 1 and r of those

� Error is at most by 1/(r-1)

� By picking r appropriately, we can tradeoff

between number of bits and error

2/16/2010 Jure Leskovec & Anand Rajaraman, Stanford CS345a: Data Mining 34

