
CS345A
Data Mining

Recommendation Systems

Anand Rajaraman

Recommendations

Items

Search Recommendations

Products, web sites, blogs, news items, …

From scarcity to abundance

� Shelf space is a scarce commodity for
traditional retailers
� Also: TV networks, movie theaters,…

� The web enables near-zero-cost
dissemination of information about
products
� From scarcity to abundance

� More choice necessitates better filters
� Recommendation engines

� How Into Thin Air made Touching the Void a
bestseller

The Long Tail

Source: Chris Anderson (2004)

Recommendation Types

� Editorial

� Simple aggregates

� Top 10, Most Popular, Recent Uploads

� Tailored to individual users

� Amazon, Netflix, …

Formal Model

� C = set of Customers

� S = set of Items

� Utility function u: C × S � R

� R = set of ratings

� R is a totally ordered set

� e.g., 0-5 stars, real number in [0,1]

Utility Matrix

0.4

10.2

0.30.5

0.21

AvatarAvatar LOTRLOTR MatrixMatrix PiratesPirates

AliceAlice

BobBob

CarolCarol

DavidDavid

Key Problems

� Gathering “known” ratings for matrix

� Extrapolate unknown ratings from
known ratings

� Mainly interested in high unknown ratings

� Evaluating extrapolation methods

Gathering Ratings

� Explicit

� Ask people to rate items

� Doesn’t work well in practice – people can’t
be bothered

� Implicit

� Learn ratings from user actions

� e.g., purchase implies high rating

� What about low ratings?

Extrapolating Utilities

� Key problem: matrix U is sparse

� most people have not rated most items

� Three approaches

� Content-based

� Collaborative

� Hybrid

Content-based recommendations

� Main idea: recommend items to
customer C similar to previous items
rated highly by C

� Movie recommendations

� recommend movies with same actor(s),
director, genre, …

� Websites, blogs, news

� recommend other sites with “similar”
content

Plan of action

likeslikes

Item profilesItem profiles

RedRed

CirclesCircles

TrianglesTriangles

User profileUser profile

matchmatch

recommendrecommend
buildbuild

Item Profiles

� For each item, create an item profile

� Profile is a set of features

� movies: author, title, actor, director,…

� text: set of “important” words in document

� How to pick important words?

� Usual heuristic is TF.IDF (Term Frequency
times Inverse Doc Frequency)

TF.IDF

fij = frequency of term ti in document dj

ni = number of docs that mention term i

N = total number of docs

TF.IDF score wij = Tfij × IDFi
Doc profile = set of words with highest

TF.IDF scores, together with their scores

User profiles and prediction

� User profile possibilities:

� Weighted average of rated item profiles

� Variation: weight by difference from average
rating for item

� …

� Prediction heuristic

� Given user profile c and item profile s,
estimate u(c,s) = cos(c,s) = c.s/(|c||s|)

� Need efficient method to find items with
high utility: later

Limitations of content-based
approach

� Finding the appropriate features

� e.g., images, movies, music

� Overspecialization

� Never recommends items outside user’s
content profile

� People might have multiple interests

� Recommendations for new users

� How to build a profile?

Collaborative Filtering

� Consider user c

� Find set D of other users whose ratings
are “similar” to c’s ratings

� Estimate user’s ratings based on ratings
of users in D

Similar users

� Let rx be the vector of user x’s ratings

� Cosine similarity measure

� sim(x,y) = cos(rx , ry)

� Pearson correlation coefficient

� Sxy = items rated by both users x and y

Rating predictions

� Let D be the set of k users most similar to c
who have rated item s

� Possibilities for prediction function (item s):

� rcs = 1/k ∑d in D rds

� rcs = (∑d in D sim(c,d) rds)/(∑d in D
sim(c,d))

� Other options?

� Many tricks possible…

Complexity

� Expensive step is finding k most similar
customers

� O(|U|)

� Too expensive to do at runtime

� Could pre-compute

� Naïve precomputation takes time
O(N|U|)

� Stay tuned for how to do it faster!

� Can use clustering, partitioning as
alternatives, but quality degrades

Item-Item Collaborative Filtering

� So far: User-user collaborative filtering

� Another view

� For item s, find other similar items

� Estimate rating for item based on ratings for
similar items

� Can use same similarity metrics and
prediction functions as in user-user model

� In practice, it has been observed that
item-item often works better than user-
user

Pros and cons of collaborative
filtering

� Works for any kind of item

� No feature selection needed

� New user problem

� New item problem

� Sparsity of rating matrix

� Cluster-based smoothing?

� Add more data!

Hybrid Methods

� Implement two or more different
recommenders and combine predictions

� Perhaps using a linear model

� Add content-based methods to
collaborative filtering

� item profiles for new item problem

� demographics to deal with new user
problem

Evaluating Predictions

� Compare predictions with known ratings
� Root-mean-square error (RMSE)

� Another approach: 0/1 model
� Coverage

� Number of items/users for which system
can make predictions

� Precision

� Accuracy of predictions

� Receiver operating characteristic (ROC)

� Tradeoff curve between false positives and
false negatives

Problems with Measures

� Narrow focus on accuracy sometimes
misses the point

� Prediction Diversity

� Prediction Context

� Order of predictions

� In practice, we care only to predict high
ratings

� RMSE might penalize a method that does
well for high ratings and badly for others

Finding similar vectors

� Common problem that comes up in
many settings

� Given a large number N of vectors in
some high-dimensional space (M
dimensions), find pairs of vectors that
have high similarity

� e.g., user profiles, item profiles

� Perfect set-up for next topic!

� Near-neighbor search in high dimensions

