CS345A Data Mining

Recommendation Systems

Anand Rajaraman

Recommendations

From scarcity to abundance

- Shelf space is a scarce commodity for traditional retailers
 - Also: TV networks, movie theaters,...
- The web enables near-zero-cost dissemination of information about products
 - From scarcity to abundance
- More choice necessitates better filters
 - Recommendation engines
 - How Into Thin Air made Touching the Void a bestseller

The Long Tail

Recommendation Types

- Editorial
- □ Simple aggregates
 - Top 10, Most Popular, Recent Uploads
- Tailored to individual users
 - Amazon, Netflix, ...

Formal Model

- \Box *C* = set of Customers
- \square S = set of Items
- \square Utility function $u: C \times S \rightarrow R$
 - \blacksquare R = set of ratings
 - R is a totally ordered set
 - e.g., 0-5 stars, real number in [0,1]

Utility Matrix

	Avatar	LOTR	Matrix	Pirates
Alice	1		0.2	
Bob		0.5		0.3
Carol	0.2		1	
David				0.4

Key Problems

- ☐ Gathering "known" ratings for matrix
- Extrapolate unknown ratings from known ratings
 - Mainly interested in high unknown ratings
- Evaluating extrapolation methods

Gathering Ratings

- Explicit
 - Ask people to rate items
 - Doesn't work well in practice people can't be bothered
- □ Implicit
 - Learn ratings from user actions
 - e.g., purchase implies high rating
 - What about low ratings?

Extrapolating Utilities

- □ Key problem: matrix U is sparse
 - most people have not rated most items
- □ Three approaches
 - Content-based
 - Collaborative
 - Hybrid

Content-based recommendations

- Main idea: recommend items to customer C similar to previous items rated highly by C
- Movie recommendations
 - recommend movies with same actor(s), director, genre, ...
- ☐ Websites, blogs, news
 - recommend other sites with "similar" content

Plan of action

Item Profiles

- ☐ For each item, create an item profile
- Profile is a set of features
 - movies: author, title, actor, director,...
 - text: set of "important" words in document
- □ How to pick important words?
 - Usual heuristic is TF.IDF (Term Frequency times Inverse Doc Frequency)

TF.IDF

 f_{ij} = frequency of term t_i in document d_j

$$TF_{ij} = \frac{f_{ij}}{\max_k f_{kj}}$$

 n_i = number of docs that mention term i N = total number of docs

$$IDF_i = \log \frac{N}{n_i}$$

TF.IDF score $w_{ij} = Tf_{ij} \times IDF_i$ Doc profile = set of words with highest TF.IDF scores, together with their scores

User profiles and prediction

- ☐ User profile possibilities:
 - Weighted average of rated item profiles
 - Variation: weight by difference from average rating for item
 - **.**..
- □ Prediction heuristic
 - Given user profile c and item profile s, estimate u(c,s) = cos(c,s) = c.s/(|c||s|)
 - Need efficient method to find items with high utility: later

Limitations of content-based approach

- ☐ Finding the appropriate features
 - e.g., images, movies, music
- Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
- Recommendations for new users
 - How to build a profile?

Collaborative Filtering

- Consider user c
- □ Find set D of other users whose ratings are "similar" to c's ratings
- Estimate user's ratings based on ratings of users in D

Similar users

- \square Let r_x be the vector of user x's ratings
- Cosine similarity measure
 - \blacksquare sim(x,y) = cos(r_x, r_y)
- Pearson correlation coefficient
 - S_{xy} = items rated by both users x and y

$$sim(x,y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \bar{r_x})(r_{ys} - \bar{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \bar{r_x})^2 (r_{ys} - \bar{r_y})^2}}$$

Rating predictions

- □ Let D be the set of k users most similar to c who have rated item s
- Possibilities for prediction function (item s):
 - $r_{cs} = 1/k \sum_{d \text{ in D}} r_{ds}$
 - $r_{cs} = (\sum_{d \text{ in D}} sim(c,d) r_{ds})/(\sum_{d \text{ in D}} sim(c,d))$
 - Other options?
- Many tricks possible...

Complexity

- Expensive step is finding k most similar customers
 - O(|U|)
- Too expensive to do at runtime
 - Could pre-compute
- □ Naïve precomputation takes time O(N|U|)
 - Stay tuned for how to do it faster!
- ☐ Can use clustering, partitioning as alternatives, but quality degrades

Item-Item Collaborative Filtering

- So far: User-user collaborative filtering
- Another view
 - For item s, find other similar items
 - Estimate rating for item based on ratings for similar items
 - Can use same similarity metrics and prediction functions as in user-user model
- In practice, it has been observed that item-item often works better than useruser

Pros and cons of collaborative filtering

- Works for any kind of item
 - No feature selection needed
- New user problem
- New item problem
- □ Sparsity of rating matrix
 - Cluster-based smoothing?
 - Add more data!

Hybrid Methods

- Implement two or more different recommenders and combine predictions
 - Perhaps using a linear model
- Add content-based methods to collaborative filtering
 - item profiles for new item problem
 - demographics to deal with new user problem

Evaluating Predictions

- Compare predictions with known ratings
 - Root-mean-square error (RMSE)
- □ Another approach: 0/1 model
 - Coverage
 - Number of items/users for which system can make predictions
 - Precision
 - Accuracy of predictions
 - Receiver operating characteristic (ROC)
 - Tradeoff curve between false positives and false negatives

Problems with Measures

- □ Narrow focus on accuracy sometimes misses the point
 - Prediction Diversity
 - Prediction Context
 - Order of predictions
- In practice, we care only to predict high ratings
 - RMSE might penalize a method that does well for high ratings and badly for others

Finding similar vectors

- Common problem that comes up in many settings
- ☐ Given a large number N of vectors in some high-dimensional space (M dimensions), find pairs of vectors that have high similarity
 - e.g., user profiles, item profiles
- Perfect set-up for next topic!
 - Near-neighbor search in high dimensions