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Abstract 

Given an instruction set, the superoptimizer finds the shortest 
program to compute a function. Startling programs have been 
generated, many of them engaging in convoluted bit-fiddling bearing 
little resemblance to the source programs which defined the func- 
tions. The key idea in the superoptimizer is a probabilistic test that 
makes exhaustive searches practical for programs of useful size. The 
search space is defined by the processor's instruction set, which may 
include the whole set, but it is typically restricted to a subset. By 
constraining the instructions and observing the effect on the output 
program, one can gain insight into the design of instruction sets. In 
addition, superoptimized programs may be used by peephole op- 
timizers to improve the quality of generated code, or by assembly 
language programmers to improve manually written code. 

1. Introduction 
The search for the optimal algorithm to compute a function is one of 
the fundamental problems in computer science. In contrast to 
theoretical studies of optimal algorithms, practical applications 
motivated the design, implementation, and use of the superoptimizer. 
Instead of proving upper or lower bounds for abstract algorithms, the 
superoptimizcr finds the shortest program in the program space 
defined by the instruction set of commercial machines, such the 
Motorola 68000 or Intei 8086. 

The functions to be optimized are specified with programs written 
using the target machine's instruction set. Therefore, the input to the 
superoptimizer is a machine language program. The output is 
another program, which may be shorter. Since both programs run on 
the same processor, with a well-defined environment, we can estab- 
lish their equivalence. 

A probabilistie test and a method for pruning the search tree makes 
the superoptimizer a practical tool for programs of limited size 
(about 13 machine instructions). 

In section 2, we describe an interesting example to illustrate the su- 
peroptimizer approach. The design azd algorithms used in the super- 
optimizer are detailed in section 3. We discuss the applications and 
limitations of the superoptimizer in section 4. In section 5, we corn- 
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pare the superoptimizer with related work. The conclusion in section 
6 is followed by a list of interesting minimal programs in appendix I. 

2. An Interesting Example 
We begin with an example to show what superoptimized code looks 
like. The instruction set used here, as in most of the paper, is 
Motorola's 68020 instruction set. Our example is the signum func- 
tion, defined by the following program: 

signum (x) 
int x; 
{ 

if(x > 0) return I; 
else if(x < 0} return -I; 
else return 0; 

) 

This function compiles to 9 instructions occupying 18 bytes of 
memory on the SUN-3 C compiler. Most programmers when asked 
to write this function in assembly language would use comparison 
instructions and conditional jumps to decide in what range the ar- 
gument lies. Typically, this takes 8 68020 instructions, although 
clever programmers can do it in 6. 

It turns out that by exploiting various properties of two's comple- 
ment arithmetic one can write signum in four instructions[ This is 
what superoptimizer found when fed the compiled machine code for 
the signum function as input: 

(x in dO) 
add.l d0,d0 ladd dO to itself 
subx.l dl,dl lsubtract (dl + Carry) from dl 
negx.l dO Iput (0 - dO - Carry) into dO 
addx.l dl,dl ladd (dl + Carry) to dl 
(signum(x) in dl} (4 instructions} 

Like a typical superoptimized program, the logic is really con- 
voluted. One of the first things that comes to mind is "where are the 
conditional jumps?". As we will see later, many functions that 
would normally be written with conditional jumps are optimized into 
short programs without them. This can result in significant speedups 
for certain pipelined machines that execute conditional jumps slowly. 

Let us see how it works. The "add.l dO, dO" instruction doubles the 
contents of register dO, but more importandy, the sign bit is now in 
the carry flag. The "subx.l d l ,  dl"  instruction computes "d l -d l -  
carry --> dl".  Regardless of the initial value of d l ,  dl-dl-carry is 
-carry. Thus dl  is -1 if dO was negative and 0 otherwise. Besides 
negating, "negx.i dO" will set the carry flag if and only if  dO was 
nonzero. Finally, "addx.I dl ,  d l"  doubles dl  and adds the carry. Now 
if dO was negative, d l  is -1 and carry is set, so dl+dl+carry is -1, if  
dO was 0, dl  is 0 and carry is clear, so d0+d0+carry is 0, if  dO was 
positive, d l  is 0 and carry isset,  so dl+dl+carry is I. 
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3. S u p e r o p t i m i z e r  I n t e r n a l s  
Superoptimizer takes a program written in machine language as the 
input source. It finds the shortest program that computes the same 
function as the source program by doing an exhaustive search over 
all possible programs. The search space is defined by choosing a 
subset of the machine's instruction set, and the op-codes of these 
instructions are stored in a table. Superoptimizer consults this table 
and generates all combinations of these instructions, first of length 1, 
then of length 2, and so on. Each of these generated programs is 
tested, and if found to match the function of the source program, 
superoptimizer prints the program and halts. 

Two methods are used to reduce the search time. The first is a fast 
probabilistie test for determining the the equivalence of two 
programs. The second is a method for pruning the search space while 
maintaining the guarantee of optimality. These two methods will 
now be discussed, but first a boolean-logic equivalence test will be 
explained, which was the first test proceedure implemented, because 
it finds use in the tree pruning method. 

3.1. Boo lean  T e s t  
The most important part of superoptimizer is the routine that deter- 
mines whether two pieces of code computes the same function. The 
first version of superoptimizer used what we call the boolean 
program verifier. The idea was to express the function output in 
terms of boolean-logic operations on the input argument. Once this 
is done, two programs are equivalent if their boolean expressions 
matches minterm for minterm. 

In practice, some instructions such as add and mul have boolean ex- 
pressions with on the order of  2^31 minterms. Various methods had 
been devised to reduce the memory requirements, but it took too 
long to compute the boolean expressions for every program 
generated. The initial version of superoptimizer tested about 40 
programs per second, and this allowed programs of up to 3 instruc- 
tions to be generated in reasonable time. 

One problem introduced by the probabilistie execution test is 
machine dependency. The test works only if the instruction set being 
searched can be executed on the machine running the super- 
optimizer. In other words, if we wish to change the instruction set, 
we would have to port the superoptimizer tothe new machine. This 
port is not too difficult since the current version of superoptimizer is 
rather short (about 300 lines of 68020 assembly code), however it 
does require that one translate it into the target assembly code. 

3.3. P r u n i n g  
In order to further reduce the search time, we filter out instruction 
sequences that are known not to occur in any optimal program. Any 
sequence of instructions that has the same effect on the machine state 
as a shorter sequence cannot be part of an optimal program, because 
if it were, you can get a shorter program by substituting the shorter 
sequence, and therefore the program was not optimal. Typical se- 
quences include the obviously silly "move X,Y; move X,Y" and 
"move X,Y; move Y,X", "and X,Y; move Z,Y" in which the MOVE 
destroys the result of the AND, "and #0,X" which does the same 
thing as "clr X", and "and X,Y; <any> Z,W; and.l X,Y" where the 
second AND is superfluous. 

This filtering is done with N-dimensional bit tables, where N is the 
length of the longest sequence we wish to filter. Each instruction in 
the sequence we wish to test indexes one dimension of the bit table, 
and a lookup value o f '  1' causes the program to be rejected as non- 
optimal (and also as incorrect, since it is the same as a shorter 
program, and superoptimizer has already checked all shorter 
programs). 

There are two ways that these bit tables can be filled. A human can 
tell the bit table maker program to exclude all "move X,Y; move 
Y,X" sequences. The program then scans all instructions in all 
dimensions of the bit matrix and sets the values accordingly. One 
can also run superoptimizer with the boolean test, and have it find 
the equivalences on its own. 

3.2. P r o b a b i l i s t l c t  Tes t  
The idea behind the probabilistic test is simple: run the machine 
code for the program being tested a few times with some set of in- 
puts and check whether the outputs match those of the source 
program. The idea here is that most programs will fail this simple 
test, and a full program verification test will be done only for the few 
programs that this test fails to catch. Running thmugh a few care- 
fully chosen test vectors takes very little time. Currently, super- 
optimizer can test 50000 programs per second and the exhaustive 
search approach becomes practical. 

The test vectors are chosen (manually) to maximize the probability 
that a random program will fail on the first or second test. For ex- 
ample, the test vectors for the signum function included -1000, 0 and 
456 as the first three vectors. This quickly eliminates programs that 
return the same answer regardless of argument, answers of  the same 
sign, as well as programs that return their argument. Following these 
vectors, all the numbers from -1024 to 1024 were tested. 

It was found in practice that a program, has a very low probability of 
passing this execution test and failing the boolean verification test. 
This fact proves very useful since most programs of interest have 
boolean expressions that are too large to fit in memory. We can 
dispense with the boolean test and manually inspect the generated 
programs for correctness, without having to analyze a large number 
of wrong programs. This manual check is not difficult since the 
programs are small (about 4 to 13 instructions). Currently, super- 
optimizer runs without the boolean check, and the author has yet to 
find an incorrect program. 

4. A p p l i c a t i o n s  a n d  L i m i t a t i o n s  

4.1. C u r r e n t  L i mi t a t i o n s  
Even with the pmbabilistie test, the exhaustive search still grows ex- 
ponentially with the number of instructions in the generated 
program. The current version of superoptimizer has generated 
programs 12 instructions long in several hours running time on a 
16MHz 68020 computer. Therefore, the superoptimizer has limited 
usefulness as a code generator for a compiler. 

Another difficulty concerns pointers. A pointer can point anywhere 
in memory and so to model a pointer in terms of boolean expressions 
one needs to take all of memory into account. Even on a 256-byte 
machine, there are 2A(2^(256"8)) possible minterms, and these are 
just too many. We have explored the probabilistie test approach for 
pointers, but the results have heed inconclusive. 

Currently, we have only the 68020 version of the superoptimizer run- 
ning the probabilistic test, so the instruction sets are restricted to sub- 
sets of the 68020 set. The machine-independent version of super- 
optimizer is limited to very short programs. 

4.2. Appl ica t ions  
Because of the pointer problem, superr0pfimizer works best when the 
instruction set is constrained to register-register operations. Even so, 
it can be used to analyze instruction sets. Some of the programs in 
appendix I were tried on the Western Electric WE32000 
microprocessor and in every case the resulting program was longer 
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than the 68020 programs. The reason for this was found m be the 
lack of an add-with-carry instmction and the fact that the flags are 
set according to the 32 bit result, even for byte sized operands, The 
National Semiconductor NS32032 was also found to suffer from flag 
problems. Here the difficulty is that extra instructions are needed to 
test the outcome of an operation because few instructions set the 
flags. 

Another use would be in the design of RISC architectures. One can 
try various instruction sets simply by coding their function in terms 
of boolean expressions and seeing what superoptimizer comes up 
with. A particular instruction may be omitted if superoptimizer finds 
a short equivalent sequence of other instructions. 

The superoptimizer may be very useful in optimizing little tasks that 
often confront a compiler. An example is finding the optimal 
program that multiplies by a particular constant for use in accessing 
arrays and such. Some examples of  multiplication by constants can 
be found in 1.6. 

Another useful feature of superoptimizer is the identity tables con- 
taining the equivalent program sequences found. These programs 
may be extracted and used to increase the power of a conventional 
peephole optimizer. 

In practice, the best use of superoptimizer has been as an aid to the 
assembly language programmer. An experienced programmer can 
use superoptimizer to come up with nifty equivalent sequences for 
small sections of his code, while retaining the overall logical flow 
that makes a program maintainable. This method has been used by 
the author (along with another program that optimizes code emulat- 
ing state machines) to write the C library function prino ~ in only 500 
bytes. 

5. Comparison with Related Work 
The most commonly used optimization techniques are those that at- 
tempt to improve the code that a compiler produces. Examples are 
peephole optimizers and data-flow analysis. Peephole optimizers 
[2] are table driven pattern matchers that operate on the assembly 

language code produced by the compiler. Every time a sequence of 
instmctions is matched by one of the tables, a smaller and faster 
replacement sequence is used. 

Data-flow analysis [1] is a technique applied during the semantic and 
code generation phases of the compilation process. It improves code 
in several ways. First, it eliminates redundant computations 
(common sub-expression elimination). Second, it moves expressions 
within a loop whose values do not depend on the loop variable to 
outside the loop (loop invariance). Third, (also in a loop) it converts 
expressions of the form 'K * loop-index' into the equivalent arith- 
metic progression 'TMP ffi TMP + K'  (strength reduction). 

These methods are general. They work regardless of the machine- 
specific details such as the representation of an integer. However, 
usually the result is not optimal in either space or speed. Super- 
optimizer depends on the instruction set, however, the code is 
guaranteed to be optimal in space and it does a very good job in 
speed as well. 

Kmmme and Ackley [4] have written a code generator for the 
DEC-10 computer that is based on exhaustive search. Their method 
translates each interior node of an expression tree into several viable 
instruction sequences. These sequences are then pieced together to 
form a set of translations for the entire expression. This set is then 
searched to find the cheapest alternative. 

In their method, there is a one to one correspondence between the 
instructions in the translation and the original expression. For ex- 
ample, if  there's an add in the expression, there will also be an add 

somewhere in the generated code. Superoptimizer has a more global 
view of the problem. It 'translates' one sequence of instructions into 
another completely different sequence. On the other hand, super- 
optimizer can ' t  translate large programs. 

The two approaches can be seen as complementing each other. Su- 
peroptimizer can be used to prepare the code generation tables used 
m Krumme and Ackley's method. Their method can also be incor- 
porated into superoptimizer to increase the size of programs that can 
be handled. Superoptimizer can generate several short equivalent 
sequences for small fragments of the source program, and then 
Krumme and Aekley's method would be used to piece these together 
and find a short overall sequence. 

Kessler [3] has written a code optimization tool, which translates se- 
quences of instructions into one single instruction. The super- 
optimizer can be seen as a more general tool with broader applica- 
tions, since it can transform programs of many instructions to 
another one of several instructions. However, Kessler's optimizer 
works regardless of  program size, and therefore can be easily used to 
optimize compiled code. Another difference is that he uses template 
matching, while supemptimizer relies on exhaustive search. 

6. Conclusion 
We have taken a practical approach to the search for the optimal 
program. We have found that the shortest programs are surprising, 
often containing sequences of instructions that one would not expect 
to see side by side. The signum function is an example of this, and 
the min and max functions given in section 1.3 contain a beautiful 
combination of the logical and and the arithmetic add. 

Exhaustive search is justified by these results, and a probabilistic test 
allows programs of  practical size to be produced. Although results 
are limited to a dozen instructions, those found are already useful. 
Many examples of these can be found in Appendix I. 

One of the most interesting results is not the programs themselves, 
but a better understanding of  the interrelations between arithmetic 
and logical instructions. Similar ideas seem to come up consistently 
in the superoptimized programs, These include the sequence 'add.l 
d l ,d l ;  subx.l d l , d l '  that extracts the sign of a number in the signum 
and abs functions and the sequence 'sub.l dl,dO; and.1 d2,do; add.l 
d l  ,dO' that selects one of two values depending on a third in the rain 
and max functions. 

In the future, we hope to explore these ideas further, and compile a 
list of useful arithmetic-logical idioms that can be concatenated to 
form optimal or near-optimal programs. 

Appendix 

I. More  Interesting Results  

1.1. S I G N U M  Function 
The signum function has been defined in section 2. Given the 68000 
instruction set, four is the minimum number of instructions to com- 
pute signum. Interestingly, three suffice on the 8086. 

(x in ax) 
cwd (sign extends register ax into dx) 
neg ax 
adc dx, dx 
(slgnum(xl in dx} 
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Find the absolute value of  a number, excluding conditional jumps 
from the instruction set. 

(x in dO) 
move. 1 d0,dl 
add. 1 dl, dl 
subx. 1 dl, dl 
eor.1 dl,d0 
sub. 1 dl, dO 
(abs ix) i n  dO) 

Notice that although it is longer than the classical method (test; 
jump-if-positive; negate), it has no jumps! This might actually be 
faster than the classical method on some pipelined machines where 
jumps are expensive. 

1.3. M a x  a n d  M i n  
This program finds the maximum of the unsigned numbers in dO and 
dl and returns the answer in dO. The comments on the right show 
what's in the various registers during execution and is similar to the 
boolean expression checker's method of analysis. 

(d0-X, dl-Y) lFlag,ReglIf di>d0 lIf dl<md0 
sub.l dl,d0[ (C,d0) -I (I, X-Y) I (0, X-Y) 
subx.1 d2,d2l (C,d2) -1 (1,11..11) [ (0,0...0) 
or.1 d2,d01(C,d0) -I (1,11..11)I(0,X-Y) 
addx. 1 dl,d0ld0 - IY IX 
( d O  - max(X,  Y ) )  

This program finds the minimum of the unsigned numbers in d0'and 
dl and returns the answer in dO. 

(d0-X, dl-Y) lFlag,Regllf dl>d0 l iE  dl<-d0 
sub.1 dl,d0l (C,d0) -I (1, X-Y) I (0, X-Y} 
subx.l d2,d2ld2- 1111,..111 1000...000 
and.l d2, d01 d0 - IX-Y I0 
add.1 dl, d0ld0 - IX IY 
(dO - min (X, Y) ) 

Simultaneous min and max. 
(d0-X, dl-Y) lFlag, ReglIf dl>d0 lIf dl<-d0 
sub.1 dl,d0l (C,d0) -I (1, X-Y) [ C0, X-Y) 
subx.1 d2,d2ld2- 1111...111 1000...000 
and.1 d0, d2 ld2 - IX-Y l0 
eor.1 d2, d0l d0 - l0 [X-Y 
add.l dl,d0ld0 - IY IX 
add.l d2, dlldl - IX [Y 
(dO - max(X, Y), dl - rain(X, Y)) 

1.4. L o g i c a l  T e s t s  
Here are some logical tests that yield true/false answers. Sequences 
such as these have immediate application in a compiler to improve 
execution speed. Shown here are the tests for zero and non-zero. 

Suitable for BASIC Suitable for C, PASCAL 

dO = 0 if dO -- 0 dO - 0 if dO -- 0 
- -1 if dO l- 0 -1 if dO !- 0 

neg. 1 dO neg. 1 dO 
subx. 1 d0,d0 subx. 1 d0,d0 

neg.1 dO 

dO - -1 if dO -- 0 dO - 1 if dO ~- 0 
0 if dO !- 0 - 0 if dO !- 0 

neg. 1 dO neg. 1 dO 
subx. 1 d0, dO subx. 1 d0, dO 
not. 1 dO addq. 1 1, dO 

By prepending 'move.l A,d0; sub.l B,d0' to the abave one can con- 
struct tests for A == B and A l= B. 

1.5. D e c i m a l  to B i n a r y  
This piece converts a 8 digit BCD number stored in dO, one digit to a 
nibble, to binary with the result also in dO. It is the longest sequence 
ever generated by superoptimizer, and was actually done in three 

sequences to multiply by 10. At first I had superoptimizer compute 
the 2 digit BCD to binary conversion function '((dO & 0xF0) >> 4) * 
10 + (dO & OxOF)'. This came out surprisingly short: 

(2 dlgit BCD number In dO) 
move. b d0,dl 
and.b #$F0,dl 
isr.b #3,dl 
sob.b dl,d0 
sub.b dl,d0 
sub. b dl, dO 
(binary equivalent in dO} 

What is actually being computed is 
arts -- dO - 3 * ((dO & 0xF0)/8) 

Representing the contents of  dO as (H:L) whereH is the upper nibble 
and L is the lower nibble we get 

dO - 16 * H + L, dO & 0xF0 - 16"H 
ans - (16*H+L) - 3 * (16"H/8) 

- 16*H+L - 6*H 
- 10*H + L 

which is the 2 digit BCD to binary function. Encouraged by this 
result, superoptimizer was put to the task of  computing first the 4 
digit BCD to binary function and then the 8 digit BCD to binary 
function. Here is the 8 digit converter: 

(8 digit BCD number in dO) 
move. 1 d0,dl * 
and.l #$FOFOFOF0, 11 * 
isr.1 #3,dl * 
sub. 1 dl, dO * 
sub. 1 dl, dO * 
sub. 1 dl, dO * 
move. 1 d0, dl + 
and. 1 #$FF00FF00, dl + 
lsr.1 |1,dl + 
sub. 1 dl, dO + 
Isr.l #2,dl + 
sub. 1 dl, dO + 
lsr.l #3,dl + 
add. 1 dl, dO + 
move. 1 d0,dl 
swap dl 
mulu #$DSf0,dl 
sub. 1 dl, dO 
(binary equivalent in dO) 

What is most amazing is the first section (marked by * alongside the 
program) It looks exactly like the 2 digit BCD to binary function. 
This section computes 4 simultaneous 2 digit BCD to binary func- 
tions on adjacent pairs of  nibbles and deposits the answer back into 
the byte occupied by those nibbles. The second part (marked by +) 
computes two simultaneous 2-byte base 100 to binary conversion 
functions. Finally, the third part computes the function 'high-word- 
of-d0 * 10000 + low-word-of-d0' to complete the conversion. 

1.6. M u l t i p l i c a t i o n  b y  C o n s t a n t s  
During a two week period, superopdmizer Was used to find minimal 
programs that multiply by constants. A sampling of these programs 
is included in this section. 

An interesting observation is that the average program size increases 
as the multiplication constant increaseS, but it increases very slowly. 
The average size of programs that multiply by small numbers (less 
than 40) is 5 instructions, most programs that multiply by numbers in 
the hundreds are 6 to 7 instructions long, and programs that multiply 
by thousands are between 7 and 8 instructions long. 

dO * -  29 dO * -  39 
move. 1 dO, dl move. 1 d0, dl 
181.1 #4,d0 lsl.l #2,d0 
sub. 1 dl, dO add. 1 dl, dO 
add.l d0.d0 Isl.l #3,d0 
sub. 1 dl, dO sub. 1 dl. dO 
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dO *m 625 
move.l dO, dl 

dO *- 156 Isl.l #2,d0 
move.l dO,dl add.l dl,dO 
ls1.1 #2,dl ls1.1 #3,dO 
add.1 dl,dO sub.1 dl,dO 
lsl.l #5,dO ls1.1 #4,dO 
sub.1 dl,dO add.1 dl,dO 

1.7. Division by Constants 
Division turns out to be difficult to optimize. A general divide by 
constant that works for all 32-bit arguments is too long to realize any 
time gain over the divide instruction, and is certainly not shorter. 
Additionally, there doesn't seem to be any nifty arithmetic-logical 
operations that simplify the process. The generated programs just 
multiply by the reciprocal of the constant. Since we do an exhaus- 
tive search, this negative result can be seen as a confirmation of the 
inherent high cost of divisions for the instruction sets considered. 

The following programs were generated in an attempt to gain insight 
into binary to BCD algorithms, another area where superoptimizer 
has had little success. Note that even with the restricted argument 
range, these are much longer than the multiply programs. 

dO - trunc(dO/lO) for dO - 0..99 
move.b dO, d1 
add.b dO,dO IdO - 10 * x 
isr.b #1,dl Idl - .1 * x 

add.b dl,dO ldO - 10.1 * x 
Isr.b #3,dO [dO - .0101 * x 
add.b dl,dO IdO - .1101 * x 
lsr.b #3, dO IdO - .0001101 * x 

dO - trunc(dO/lO0) for dO - 0..9999 
move.w dO, d1 
lsr.w #1,dl Idl - .1 * x 

add.w dO, dO [dO - i0 * g 
add.w dO, d1 ldl - 10.1 * x 
lsr.w #5,dO ldO - .0001 * x 
add.w dl,dO ldO - 10.1001 * x 
isr.w #8,dl Jnote: you can't isr.w #10,dl 
Isr.w #2,dl [dl - .00000000101 * x 
sub.w dl,dO IdO - 10.10001111011 
isr.w #8, dO IdO - .0000001010001111011 * x 
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