
Real-time Crash Prediction

Chris Lucas
Stanford University

cflucas@stanford.edu

Sam Premutico
Stanford University

samprem@stanford.edu

Neel Ramachandran
Stanford University

neelr@stanford.edu

1 Introduction

Our project, Real-time Crash Prediction, aims to detect risky driving behavior by predicting whether
a driver will crash within a certain time window from the current time step. We aim to answer
questions such as, Given a driving sequence of the last 5 seconds, can we predict whether a driver
will crash 5 to 10 seconds from now?

We believe this is an interesting yet challenging task with a variety of applications. These applica-
tions include aiding insurance companies when they are deciding whether or not to insure someone
based on the likelihood of crashing or improving real-time safety software found in cars today that
alert drivers if they are driving dangerously.

In our report, we first define the task concretely, and then describe the dataset and important pre-
processing steps. We then describe our models, experiments, and results. Finally, we outline future
work and discuss the significance of our findings in the broader context of driver-behaviour analysis.

1.1 Problem Definition

Here, we describe our task precisely, and present our hypotheses about our eventual results. Our goal
in this project is to build a model that can make continuous, real time collision predictions based
on sequences of vehicle sensor data. We can define the task as follows. First, we assume access to
d sensor readings from a vehicle, measured at 30 Hertz (ie, 30 times per second): As such, at any
present timestep t0, we receive a vector xt0 ∈ Rd with the sensor readings from that timestep. Then,
the input to our model at time t takes as input a sequence of sensor data of length 30`, (where ` is
masured in seconds), from xt0−30` to xt0 . We then seek to predict y ∈ {0, 1}, the occurrence of a
collision, within the window (t0 + t1, t0 + t2) (measured in seconds).

As such, we can answer questions such as the one posed in the previous section: Given a driving
sequence of the last 5 (`) seconds from present moment, can we predict whether a driver will crash 5
(t0) to 10 (t1) seconds from now? Formulating the task in this way allows us to eventually perform
real-time crash prediction; since a vehicle is recording streaming sensor data, we can run inference
with our model at repeated intervals during the course of a drive, in order to make continuous
predictions and detect risky states.

Note that under this formulation, there exist three natural parameters: 1) the length of the sequence
`, the start of the collision window t1, and the end of the collision window t2. Choices for these
parameters form different ”settings” under which we can train our model and have interesting real-
world implications: the choice of l determines how much streaming sensor data we must keep in
memory at any given timestep, while the choice of t1 and t2 determine how far into the future we
are trying to make a prediction. In this work, we consider all combinations of ∈ {0.5, 1, 3, 5, 10}
seconds and (t1, t2) ∈ {(1, 6), (5, 10), (15, 20)} seconds, for a total of 15 settings. We note that
in this project we keep the window size (t2 − t1) constant at 5 seconds in order to compare results
between settings, but the work is easily extendable to shorter or longer relevant window sizes.

1



Given this problem formulation, we make two hypotheses about our model’s eventual results under
different settings. First, we hypothesize that results should improve as we increase the input se-
quence `, as the model can access a longer history of the state of the driver and vehicle. Second, we
hypothesize that results should decrease as we predict further into the future (by increasing (t1, t2)),
as the current driving state is less indicative of the eventual state we are predicting.

2 Dataset

The dataset is generated from a high-end driving simulator provided by driving simulation company
Nervtech. It consists of fifteen distinct users, who each complete a <1 hour course with a variety of
difficult circumstances and environments. The data is bucketed into groups of users who experienced
at least one accident in the simulation and users who did not. There are 9 users who crashed at least
once and 6 users who did not crash at all. For the majority of this work, we consider only the data
from the 9 users who experienced a collision.

The simulator reports the readings of 120 sensors collecting data at 30 Hz. The sensors output varied
and granular information at each timestamp. Basic values such as coordinates, speed, and accelera-
tion are recorded, as well as more complex features such as the car’s distance to the next intersection,
the torque of the steering wheel, or the current slope of the road. Beyond the sensors, there are 19
more features that record environmental variables. These include measurements relating to rain and
fog, evidence of water on the road, or if the driver was wearing a seat-belt. The resulting dataset is
comprised of 139 columns with values being recorded at the aforementioned high frequency over
the course of the hour-long drive.

We experienced some issues in leveraging the full set of features present in the dataset due to a
lack of official data documentation and difficulty communicating with Nervtech, the provider of the
dataset.

However, there is some level of opacity regarding the column names and the data they hold. For ex-
ample, categorical variables in the data such as Area ID, Scenario ID, and Subgaze contained integer
values without documented interpretations. Although they potentially represent meaningful features
for our predictions, we did not immediately have methods to disambiguate their significance. After
working with out project mentor, we were able to discern the meaning of a some of these features,
but decided to ignore others (such as Subgaze).

We anticipated that the mix of real-time sensor and environmental data would add useful texture
when we are building models to solve the prediction question we outlined above. Thus, we ensured
our models would leverage both kinds of readings and incorporate them accordingly.

We discuss the preprocessing of the dataset in section 3.1 and provide in-depth analysis of the data.

3 Experimental Setup and Methodology

3.1 Data Preparation

We dedicated the initial phase of our project to data preprocessing and exploration in order to render
the data useful for our task and to gain possible insights into our task prior to building any models.

3.1.1 Cleaning & Normalization

First, we reduce the number of variables in the data (ie, the number of sensor recordings) from
196 to 76. We remove variables that 1) have low variance, 2) directly indicate an actual collision
(such as the position and force of the collision), and 3) are specific to this particular simulation, and
would prevent our model from generalizing well to other real-life or simulated driving data. A clear
example of 3) is the x-y-z coordinate data marking the position of the vehicle. Removal of these
variables is especially important here so that the model is not simply learning the coordinates of
difficult or ”risky” portions of the simulation, and so that it model can generalize well beyond this
data. We do retain x-y-z coordinates in relation to the center of the road, which we calculate based
on the given sensor data. We posit that this information is important to collision prediction, as it can

2



indicate drifting or a distracted driving state. After dropping these variables, we standardize each
feature to have mean 0 and standard deviance 1.

3.1.2 Collision Segmentation

Next, we partition the data into collision and non-collision segments. Though the sequences input
to our model are of length ` seconds, while partitioning the data we consider non-overlapping se-
quences of length ` + t2, as this represents the full length of time upon which the inference task is
based (to answer the question of predicting a collision 5 to 10 seconds from present-time given the
past 5 seconds requires considering a full sequence of 15 seconds). As such, the sequence lengths
differ for each of the 15 settings mentioned in the previous section, and so we perform this segmen-
tation step for each setting.

We note that it is a non-trivial task to extract distinct collisions from the original dataset. Every row
of sensor readings in the raw data includes features related to the last user collision, including the
coordinates and force of the collision. As such, we interpret a change in these values as marking the
occurrence of a new collision; however, the values often change in several consecutive columns. We
hypothesize that this occurs when a collision is not instantaneous but ”dragged out” across time, such
as two cars scraping against each other for a prolonged period. Thus, we use simple heuristics to
distinguish distinct crashes from consecutive stages of the same crash. We consider distinct crashes
as ones that 1) occur 30 seconds apart, and 2) occur 150 meters apart in Euclidean distance. We
discuss the possible sensitivity of our model to the collision-segmentation heuristics in Section 4.

In addition, though the ground-truth time of the collision is known in our dataset, we aim to simulate
the applicable task of predicting a collision within a window size (it is more reasonable to predict
that a crash will occur 5 to 10 seconds from t0, rather than exactly 5 seconds from t0. As such, we
choose collision segments such that the ground-truth collision is positioned at random in the (t1, t2)
window.

In our initial experiments, we consider the ` = 5 and (t1, t2) = (5, 10) setting. Our resulting dataset
comprises of 1489 non-overlapping sequences, with 1310 non-collision sequences and 179 collision
sequences. We make two important observations regarding the size of the dataset. First, due to the
small number of drives with collisions in the dataset, the size of the dataset is extremely small, and
has a strong class imbalance. We therefore choose to use simple model architectures as to not overfit
the training data; these architectures are further described in Section 3.2. Second, we note that there
are 179 collisions in the dataset; these span across 9 drivers in simulations that last under an hour.
This means that on average, each user crashes every three minutes, and approximately 20 total times.
This finding is an important reminder that this dataset is generated from simulated rather than real
drives, likely attributing to two important biases towards collisions in the data: 1) segments of the
simulation are more challenging than typical real-life driving, and 2) drivers are less-risk averse
in simulated driving, given there are no tangible repercussions to crashing. This prompts natural
skepticism about the ability of this work to generalize to real-life driving data, which we return to in
Section 4.

As mentioned above, we re-segment the data for each of the considered settings. We note that the
number of collision sequences will remain constant since the ground-truth number of collisions is in-
dependent of our segmenting procedure, while the number of the non-collision sequences decreases
as we widen the gap between the input sequence and the crash prediction window. As a result, the
dataset size and class imbalance vary from setting to setting, and makes our results across varied
settings difficult to compare. We fix this issue by adding supplementary data from the non-collision
driving dataset to the necessary settings.

3.1.3 Data Exploration

After cleaning and segmenting our data, we perform exploration and visualization to get a sense
of what the data looks like. We first visualize our driving sequences in two dimensions using t-
Distributed Stochastic Neighbor Embedding (t-SNE) [2] to reduce the driving sequences to two
dimensions and plotted the resulting datapoints, grouped by features of interest.

3



Figure 1: Sequences colored as either collision (blue) or non-collision (red). We see that the se-
quences fail to produce meaningful clusters with respect to collision and non-collision labels.

In 1, we group embedded collision sequences in blue, and non-collision sequences in red. We find
no clear separation between the groups, indicating no obvious differences between the sequences
for both labels.

Figure 2: tSNE representation of driving sequences, colored by Area ID, showing clear separation
in driving patterns by area.

We see in 2 that when we color driving sequences by the Area ID (denoting different driving environ-
ments such as loading zone, rural, urban, and highway) of the sequence, there is clear separation in
the driving embeddings, confirming our intuition that driving style varies signifcantly from environ-
ment to environment. As sequences cluster meaningfully with respect to Area ID but not collision
label, we run t-SNE on sequences from a single Area ID, and observe the collision versus non-
collision groupings. However, we find no meaningful patterns in the visualizations, again indicating
that in the reduced space, collision sequences are not distinguishable from non-collision sequences.

We also analyzed the individual normalized column values in the data to find features that were
significantly different in collision and non-collision sequences.

4



Figure 3: Mean feature values of normalized data, grouped by collision and non-collision sequences.

Interestingly, in 3 we find significant differences in both driver-related and environment-related vari-
ables. Collision sequences exhibit higher values for driver-related variables such as acceleration and
acceleration of the closest vehicle, as well as environment-related variables such as speed limit, road
angle and curve, fog, and distance to the next intersection. It is also interesting to note, that some
of these features depend on the complexity of the sensor system and car software we have available.
For example, precisely tracking the acceleration of the closest vehicle would likely require a con-
nected car system, and determining the distance to the next intersection might require the availability
of a navigation tool. In practice, not all current in-car systems have these features, but we seek to
use as many relevant features as possible to make collision prediction more tractable.

3.2 Models

We implement two baseline models, and two deep learning architectures. For the latter, we seek to
exploit the temporal nature of the data by implementing recurrent neural network (RNN) and con-
volutional neural network (CNN) architectures, and show that their improvement over the baseline
models indicates successful leveraging of temporal information.

3.2.1 Baselines

For our baselines, we use a Logistic Regression binary classifier to evaluate our sucess with a simple
linear model. We used L2-norm regularization and the max number of iterations for convergence
was set to 200. We also train a Random Forest classifier with 10 decision trees.

As previously mentioned, we do not leverage the temporal nature of the data for these baseline
models. A single input sequence generated from the segmentation procedure is a matrix of size
(T,D), where T is given by 30` and D = 76; here, we reshape the input sequence into a single T
vector.

3.2.2 RNN

Our first deep learning architecture makes use of RNNs, a popular model choice for sequential or
temporal data. An RNN processes input by ingesting data from each timestep sequentially, and
maintaining a hidden state that it encodes information about the input over time. Here, we use we
use a Long Short-Term Memory (LSTM) model [3], an RNN variant designed to better learn long-
term temporal dependencies than the vanilla RNN implementation. Our initial LSTM architecture
consisted of a 60-dimensional hidden vector ht. We further experiment with the hidden size of the
network, described below. We feed the final LSTM hidden state to a fully-connected linear layer
that outputs scores for both classes.

5



3.2.3 CNN

We also implemented a 1D-CNN architecture. Though CNNs are historically more common in the
two-dimensional input setting for tasks in computer vision, recent work [4] suggests that the one-
dimensional variant is equally, if not more effective than RNN-based architectures in the temporal
setting, due to faster paralleled learning, and increased gradient flow that allows the model to learn
long-term dependencies more effectively than LSTMs.

We intentionally keep our neural models shallow to avoid overfitting due to the small size of our
dataset. Our CNN model has two Convolutional → ReLU → MaxPool layers, follwed by a fully
connected prediction layer. We used 3x3 kernels for the convolutional layers and 2x2 kernels for
the max-pool layers. We initially use 80 and 40 filters for the first and second convolutional layers,
respectively. We further experiment with hyper-parameter tuning across both models in the next
section.

3.3 Experiments & Methodology

For both deep learning models, we use Binary Cross-Entropy loss, and an Adam optimizer. Due to
the significant class-imbalance of our data, we weight the loss function to penalize missing collisions
predictions more harshly than missing non-collisions predictions.

As previously mentioned, we generate datasets for each of the 15 settings we consider, ie each
possible combination of ` = {0.5, 1, 3, 5, 10} and (t1, t2) = {(1, 6), (5, 10), (15, 20)}. For each
setting, we train several models, performing random hyperparameter search across hidden state
size (LSTM), number of filters (CNN), learning rate, and loss weights. We use an 80/10/10 train-
ing/validation/eval split across sequence datasets and models. To evaluate our models, we avoid
using accuracy due to the severe class imbalance of our dataset (a naive prediction of non-collision
for every sequence would result in an accuracy of nearly 90%). Instead, we focus on precision,
recall, and F1-score metrics associated with the collision class. We consider recall and F1-score of
particular importance here, because in this setting we can afford to be over-agressive with predicting
collisions, so that 1) we have the best chance of detecting every collision and 2) even if a collision
does not actually occur, we may be accurately predicting some notion of a risky driving state.

3.4 Results

Our results are summarized in the tables below. We note that we only run our baselines models on
the ` = 5, (t1, t2) = (5, 10) setting. We can see that the LSTM and CNN models both outperform
the baseline models by over 5%, suggesting that leveraging the temporal nature of the data plays an
important role in making good predictions.

From our baseline models, we extracted the importance of each of the features in making crash
predictions, shown in in 4. We find distance from the center of the road, vehicle roll, acceleration,
and distance to the next intersection among the most important features. Matching our intuition,
these results reaffirmed the idea that crash prediction is predicated on sensor data from both the
driver’s behavior as well as other environmental variables.

Table 1: Preliminary Results

Model Precision Recall F1-Score
Logistic Regression 0.15 0.13 0.14

Random Forest 0.25 0.05 0.09

The observed results align with our initial hypotheses regarding the effects of changing the setting
by tweaking the ` and (t1, t2) parameters. We find that as we increase the sequence length (moving
down the columns in the table), F1-scores improve. This makes sense given that we are essentially
using more data to inform our predictions about the future. Meanwhile, as we push the five-second
crash prediction window further into the future, we see a decrease in performance. This matched
our initial intuition that it is more difficult to make predictions about the distant future than it is to

6



Figure 4: Feature importances in the baseline model.

Table 2: CNN F1 Scores for Sequence Length and Window Size Permutations

(1,6) (5, 10) (15, 20)
0.5 0.37 0.05 0.04
1 0.13 0.09 0.05
3 0.17 0.14 0.09
5 0.24 0.19 0.11

10 0.40 0.33 0.20

Table 3: LSTM F1 Scores for Sequence Length and Window Size Permutations

(1,6) (5, 10) (15, 20)
0.5 0.35 0.06 0.04
1 0.13 0.08 0.05
3 0.16 0.12 0.08
5 0.23 0.16 0.10

10 0.40 0.30 0.19

make predictions about the near future. One notable discrepancy in these results is the fact that both
models perform relatively well in the ` = 0.5, (t1, t2) = (1, 6) setting; this is most likely due to the
fact that the input sequence is short and very close to the relevant crash prediction window. As such,
certain sensor values are likely already becoming extreme and indicative of a crash at this point,
while this valuable information may be diluted in the settings with longer input sequences.

We also find comparable results between the CNN and LSTM models, though the CNN models
perform slightly better (and took a fraction of the time to train), aligning with results of work done
in [4]. We find that overall, the results achieved by the models are relatively poor in terms of absolute
measure; we discuss further in the next section.

4 Future Work and Conclusion

In this paper, we train models to perform real-time crash prediction in order to answer questions like,
Given a sequence of sensor readings from the past 5 seconds, can we predict whether a crash will
occur 5 to 10 seconds from now? Answering this question has a number of important applications,
ranging from general driving safety to car insurance decisions. We train two baseline models and
two neural models, and find that the neural models, though simple, outperform the baseline models
by leveraging the temporal nature of the data. We encounter two main limitations in this project:

7



first, the small nature of the dataset makes learning an effective, complex model difficult, and we
are constrained to using simple models here as to prevent overfitting. Secondly, we find that these
simulated drives are in fact irrepresentative of real-life driving, as the number of collisions each
user makes is extremely high, likely due to the challenging nature of the driving simulation, and the
decreased risk profile of the drivers. This makes our results difficult to generalize to the real-world
driving data that would look quite different in terms of collision occurrences.

Ultimately, we find that while the results of our models satisfy our hypotheses, they perform some-
what poorly, as measured by F1-score. In this setting, however, it is important to consider the diffi-
culty in predicting collisions. Collisions are rare (even with the increased ocurrences in this dataset)
and often occur out of nowhere, and cannot be detected based on data from previous timesteps.
Furthermore, our sensor data fails to encode lots of visual information that would be important to
the collision prediction task. Thus, it is difficult to expect such a model to score highly on this task
in terms of conventional metrics; false positive predictions may still be a valuable example of risky
state detection, for example. Nevertheless, our work shows promising initial results for performing
collision prediction.

One point of further exploration would be training our models perform in different kinds of envi-
ronments. From the data, we know whether a driver is driving in rural or urban environments. It
would be interesting to see how our models perform with each of the fifteen aforementioned settings
with regards to window position and sequence length. For example, our intuition tells us that in
fast-paced urban environments, we could make myopic predictions well. On the other hand, in more
rural areas, we could potentially be better at predicting crashes further out in the future.

Finally, we would like to acknowledge and thank Vincent Duong from viaduct.ai for mentoring us
over the course of the quarter.

References

[1] Hallac, David, et al.‘Drive2Vec: Multiscale State-Space Embedding of Vehicular Sensor Data.

[2] Maaten, Laurens van der, and Geoffrey Hinton. ‘Visualizing data using t-SNE.

[3] Hochreiter et. al. ‘Long Short-Term Memory’

[4] Bai et. al. ‘An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Mod-
eling

8


	Introduction
	Problem Definition

	Dataset
	Experimental Setup and Methodology
	Data Preparation
	Cleaning & Normalization
	Collision Segmentation
	Data Exploration

	Models
	Baselines
	RNN
	CNN

	Experiments & Methodology
	Results

	Future Work and Conclusion

